
Paweł Rajba
pawel@cs.uni.wroc.pl
http://itcourses.eu/

mailto:pawel.rajba@gmail.com
http://kursy24.eu/

 Introduction
 Security Risk
 OWASP Top 10

 75% of attacks happen in the Application Layer
(Gartner)

 Perfectly secure environment can be
compromised by a security hole in a web
application

 There are numerous more difficult instructions
allowing to hack a technology or a product

 Reputation is priceless (usuallly)
 Enterprises should assume that legal liability for

poor security practices is on the horizon, and act
accordingly
(Gartner recommendation)

 Elements of the web application environment
 A Web server with an application
 A Network infrastructure where the web server is placed

(with all servers, firewalls, WAFs, IDSs, IPSs, …)
 A Web browser
 A Communication channel (most common: HTTP &

HTTPS)
 Everything outside the network infrastructure can be

tampered by bad guys
 My favourite Fiddler and breakpoints rules (F11 key)
 Specialized tools instead of browsers
 Scanners

Źródło: http://en.wikipedia.org/wiki/Application_security

http://en.wikipedia.org/wiki/Application_security

 Attack vector

 A path or way in which a hacker can access computer
system and exploit/reach a vulnerability

 It can be one vulnerability with several attack vectors

▪ More: http://searchsecurity.techtarget.com/definition/attack-vector

 Weakness Prevalence

 How much a weakness is spread around

 Weakness detectability

 Is it easy to find the weakness in an application?

 Technical and business impact

http://searchsecurity.techtarget.com/definition/attack-vector

 Possible path: can be easy, can be difficult

Źródło: https://www.owasp.org/index.php/Top_10_2013-Risk

https://www.owasp.org/index.php/Top_10_2013-Risk

 Every risk is assessed according to the following schema:

 The risk calculated as follows (an example):

Źródła: https://www.owasp.org/index.php/Top_10_2013-Risk | https://www.owasp.org/index.php/Top_10_2013-Note_About_Risks

https://www.owasp.org/index.php/Top_10_2013-Risk
https://www.owasp.org/index.php/Top_10_2013-Note_About_Risks

 A project from OWASP
 OWASP =

The Open Web Application Security Project
 OWASP TOP 10 is a list of the 10 Most Critical

Web Application Security Risks
 Refreshed every 3rd year
 Last version is from 2013
 A direct link:

 https://www.owasp.org/index.php/Top_10_2013-Top_10

https://www.owasp.org/index.php/Top_10_2013-Top_10

 A1: Injection

 A2: Broken Authentication and Session Management

 A3: Cross-Site Scripting (XSS)

 A4: Insecure Direct Object References

 A5: Security Misconfiguration

 A6: Sensitive Data Exposure

 A7: Missing Function Level Access Control

 A8: Cross-Site Request Forgery (CSRF)

 A9: Using Components with Known Vulnerabilities

 A10: Unvalidated Redirects and Forwards

 From OWASP:
 Injection flaws, such as SQL, OS, and LDAP injection occur

when untrusted data is sent to an interpreter as part of a
command or query. The attacker’s hostile data can trick
the interpreter into executing unintended commands or
accessing data without proper authorization.

 Most popular: SQL injection
 Keep in mind that there are other ones:
 LDAP injections

 XPATH injections

 Command injections

 DOM injections

 JSON injections

 LOG spoofing

 …

 But we will focus on SQL injections

 Occurs in the database layer of an application
 Simple sample

 QUERY: "SELECT * FROM [Users] WHERE
UserName ='"+Request["User"]+"' AND
Password='"+Request["Pwd"]+"'"

 Malicious UserName inputs:
▪ ' OR 1=1; --
▪ ';DROP TABLE [Users]; SELECT '1'

 Threats
 Leak of information (at best)
 Create, update or delete data
 Grant access to hacker
 Take over the OS

 A slightly dangerous attacks
 Creating Windows account

▪ SELECT * FROM [Users] WHERE UserName =''; exec
master..xp_cmdshell 'net users username password /add'; --
' AND Password=''

 Adding this account to the Administrators group
▪ SELECT * FROM [Users] WHERE UserName =''; exec

master..xp_cmdshell 'net localgroup Administrators username
/add'; --
' AND Password=''

 Be carefull with stored procedure
 Putting simply SQL code into stored procedure doesn’t

make it secure
▪ …but can increase a security level

 Blind SQL injection
 Occurs when application is vulnerable, but the results are

not visible to the attacker
▪ e.g. page doesn’t display correctly, or some different content

appears

 It’s a time-consuming type of attack
 Sample scenario of such attack

▪ Try to check if the site is vulnerable
http://www.somesite.com/id=22 and 1=2
▪ If something changed, e.g. an image or anything else is missing, we can

continue

▪ Check no. of returned columns
http://www.somesite.com/id=22 order by n
where instead of n you put 1,2,3,…

▪ Check a vulnerable column
http://www.somesite.com/id=-1 union select 1,2,version(),4,5

▪ … and continue guessing until you shoot something interesting

 How to protect?
 Definitely use a parametrized statement:

SELECT * FROM [Users] WHERE UserName = ? AND
PASSWORD = ?
▪ Then sp_executesql is used (in case SQLServer)
▪ But some parts are not parametrized then you must be careful

 Escape all potential risk fragments (e.g. – ; ' " \ etc.)
 Validate input

▪ Strong typing
▪ e.g. id is an int – check whether it is really int

▪ Business logic
▪ e.g if an account no. is expected, check precisely if it’s the account no.

 Using stored procedures don’t mitigate risk, but can reduce it
▪ By e.g. typed parameters

 Use the least privileges principle, i.e. run a query in a context of
a user with least privileges needed to perform a specified action

 SQL Injection
 http://www.unixwiz.net/techtips/sql-injection.html

 http://ferruh.mavituna.com/sql-injection-cheatsheet-oku/

 http://weblogs.sqlteam.com/mladenp/archive/2011/02/16/sql-server-sql-injection-from-start-to-end.aspx

 http://www.securiteam.com/securityreviews/5DP0N1P76E.html

 http://blogs.msdn.com/b/raulga/archive/2007/01/04/dynamic-sql-sql-injection.aspx

 http://www.securiteam.com/securityreviews/5DP0N1P76E.html

 http://download.oracle.com/oll/tutorials/SQLInjection/index.htm

 http://www.sommarskog.se/dynamic_sql.html

 http://msdn.microsoft.com/en-us/library/cc716760.aspx

 Blind SQL Injection sample scenarios
 https://www.owasp.org/index.php/Blind_SQL_Injection

 http://www.breakthesecurity.com/2010/12/hacking-website-using-sql-injection.html

 http://forum.intern0t.org/web-hacking-war-games/818-blind-sql-injection.html

http://www.unixwiz.net/techtips/sql-injection.html
http://ferruh.mavituna.com/sql-injection-cheatsheet-oku/
http://weblogs.sqlteam.com/mladenp/archive/2011/02/16/sql-server-sql-injection-from-start-to-end.aspx
http://www.securiteam.com/securityreviews/5DP0N1P76E.html
http://blogs.msdn.com/b/raulga/archive/2007/01/04/dynamic-sql-sql-injection.aspx
http://www.securiteam.com/securityreviews/5DP0N1P76E.html
http://download.oracle.com/oll/tutorials/SQLInjection/index.htm
http://www.sommarskog.se/dynamic_sql.html
http://msdn.microsoft.com/en-us/library/cc716760.aspx
http://www.breakthesecurity.com/2010/12/hacking-website-using-sql-injection.html
http://www.breakthesecurity.com/2010/12/hacking-website-using-sql-injection.html
http://forum.intern0t.org/web-hacking-war-games/818-blind-sql-injection.html

 Quick review
 https://www.owasp.org/index.php/XPATH_Injection

 https://www.owasp.org/index.php/LDAP_injection

https://www.owasp.org/index.php/XPATH_Injection
https://www.owasp.org/index.php/LDAP_injection

 A1: Injection

 A2: Broken Authentication and Session Management

 A3: Cross-Site Scripting (XSS)

 A4: Insecure Direct Object References

 A5: Security Misconfiguration

 A6: Sensitive Data Exposure

 A7: Missing Function Level Access Control

 A8: Cross-Site Request Forgery (CSRF)

 A9: Using Components with Known Vulnerabilities

 A10: Unvalidated Redirects and Forwards

 From OWASP:
 Application functions related to authentication and

session management are often not implemented
correctly, allowing attackers to compromise passwords,
keys, or session tokens, or to exploit other implementation
flaws to assume other users’ identities.

 Where are the threats?
 User credentials aren’t protected enough and can be stolen

▪ e.g. SQL Injection, guessing or just brute force attack, keyloggers

 Credentials can be guessed or overwritten through weak
account management functions
▪ e.g., account creation, change password, recover password

 Session IDs
▪ are exposed in the URL (e.g., URL rewriting).
▪ are vulnerable to session fixation attacks.
▪ don’t timeout, or user sessions or authentication tokens, particularly

single sign-on (SSO) tokens, aren’t properly invalidated during logout.
▪ aren’t rotated after successful login.

 Passwords, session IDs, and other credentials are sent over
unencrypted connections (man-in-the-middle attack)

Źródło: https://www.owasp.org/index.php/Top_10_2013-A2-Broken_Authentication_and_Session_Management

https://www.owasp.org/index.php/Top_10_2013-A2-Broken_Authentication_and_Session_Management

 How to protect ourselves?
 Credentials should be stored using hashing or encryption

▪ Also credentials to databases
▪ Consider using „slow” function (e.g. PBKDF2) – prevents brute force
▪ Mandatory using salt in hashes – prevent rainbow tables attack

 Credentials shouldn’t be easy to guess or overwrite
▪ Some policies should be applied
▪ Brute force (e.g. weak passwords)

 Be carefull with password recovery – some approaches can be risky
 TLS should be used to send sensitive information (including credentials and session IDs)

▪ Ensure certificate is valid

 Consider different approach than user/password
▪ PKI, Fingerprint
▪ Digipass, one-time codes
▪ Masked password (a little bit controversial)
▪ Multi-factor authentication

 Session management should be done carefully
▪ Not in URL,rotation of session’s Ids, using good timeouts and proper logout

 Sometimes it’s difficult to protect
 e.g. keyloggers, but a display keyboard can be solution…

… O RLY? Who will use it??

 Session fixation

Źródło: https://www.owasp.org/index.php/Session_fixation

https://www.owasp.org/index.php/Session_fixation

 Session fixation

 Other similar possibilities

▪ XSS on client side
▪ http://website.kom/<script>document.cookie=”sessionid=abcd”;</script>

▪ XSS on DOM
▪ http://website.kon/<meta http-equiv=Set-Cookie content=”sessionid=abcd”>

▪ Insert HTTP header

Źródło: https://www.owasp.org/index.php/Session_fixation

http://website.kom/<script>document.cookie=”sessionid=abcd”;</script
https://www.owasp.org/index.php/Session_fixation

 Session fixation
 https://www.owasp.org/index.php/Session_fixation

 http://en.wikipedia.org/wiki/Session_fixation

 https://www.owasp.org/index.php/Session_Management_Cheat_Sheet

 http://software-security.sans.org/blog/2009/06/14/session-attacks-and-aspnet-part-1/

 http://software-security.sans.org/blog/2009/06/24/session-attacks-and-aspnet-part-2

https://www.owasp.org/index.php/Session_fixation
http://en.wikipedia.org/wiki/Session_fixation
https://www.owasp.org/index.php/Session_Management_Cheat_Sheet
http://software-security.sans.org/blog/2009/06/14/session-attacks-and-aspnet-part-1/
http://software-security.sans.org/blog/2009/06/24/session-attacks-and-aspnet-part-2

 A1: Injection

 A2: Broken Authentication and Session Management

 A3: Cross-Site Scripting (XSS)

 A4: Insecure Direct Object References

 A5: Security Misconfiguration

 A6: Sensitive Data Exposure

 A7: Missing Function Level Access Control

 A8: Cross-Site Request Forgery (CSRF)

 A9: Using Components with Known Vulnerabilities

 A10: Unvalidated Redirects and Forwards

 From OWASP
 XSS flaws occur whenever an application takes untrusted data and

sends it to a web browser without proper validation or escaping. XSS
allows attackers to execute scripts in the victim’s browser which can
hijack user sessions, deface web sites, or redirect the user to malicious
sites.

 Same Origin Policy

 Define a rule where only requests to the same
„site” are allowed

 It’s applied mostly to JavaScript code

 Relaxing SOP

 Cross-origin resource sharing

▪ Let’s review
▪ http://en.wikipedia.org/wiki/Cross-origin_resource_sharing

 JSONP

▪ Let’s review
▪ https://en.wikipedia.org/wiki/JSONP

http://en.wikipedia.org/wiki/Cross-origin_resource_sharing
https://en.wikipedia.org/wiki/JSONP

 XSS stands for cross site scripting
 Attack on a the client side (web browser)

 Force a web browser to execute an unwanted JavaScript
code

 There are 3 main types of attacks
 DOM based XSS (type 0)

▪ The code is executed as a result of dynamic modification of a DOM
by another JavaScript code

 Reflected (type1)
▪ The code is attachted somehow to a link and the user is tricked to

follow this link

 Stored or persistent (type 2)
▪ The code is stored in a database and shown to a user while a web

page is opening

 Classic scenarios

 Someone is tricked to follow a link with malicious
code attached (type 0 and 1)

 Hacker adds a malicious code in a blog comment

▪ Everyone who opens an article, executes malicious code

 What the attacker can do using XSS hole
 Steal your cookies (sometimes they can be really delicious)
 Intercept your login and password
 Generally embed any malware
 XSS is a start point for other attacks (e.g. CSRF)

 How can we protect ourselves?
 Escape everything sent to a browser

▪ Sometimes we want to sent an unescaped stuff – it should be then under full control

 Use frameworks or tools to do it automatically
▪ In this case a good knowledge of the tools is important

 Validate any input provided by an user
▪ Use whitelists instead of blacklists

 Use httpOnly
 XSS regarding the ASP.NET

▪ http://msdn.microsoft.com/en-us/library/ff649310.aspx

 Other good resources:
▪ https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
▪ https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet

http://msdn.microsoft.com/en-us/library/ff649310.aspx
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet

 But how information can be stolen?

 Requests are limited by the same origin policy and
alerts don’t look dangerous…

 … but we can use img and iframe tags

 … and there are many other techniques

 Surprising how many big companies has been
xssed

 Nice web site: http://xssed.com/

http://xssed.com/

 XSS
 https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet

 https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet

 http://projects.webappsec.org/w/page/13246920/Cross%20Site%20Scripting

 http://excess-xss.com/

 http://www.webappsec.org/projects/articles/071105.shtml

 https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet

 https://www.acunetix.com/websitesecurity/xss/

 http://www.isaca.org/chapters5/Venice/Events/Documents/ISACAVENICE-OWASP-UNIVE-2013-1%20-%20DiPaola.pdf

 http://www.thegeekstuff.com/2012/02/xss-attack-examples/

 https://addons.mozilla.org/en-US/firefox/addon/xss-me/

 Browser Security Handbook
 https://code.google.com/p/browsersec/wiki/Main

http://excess-xss.com/
http://excess-xss.com/
http://excess-xss.com/
http://excess-xss.com/
http://www.webappsec.org/projects/articles/071105.shtml
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet
https://www.acunetix.com/websitesecurity/xss/
http://www.isaca.org/chapters5/Venice/Events/Documents/ISACAVENICE-OWASP-UNIVE-2013-1 - DiPaola.pdf
http://www.thegeekstuff.com/2012/02/xss-attack-examples/
https://addons.mozilla.org/en-US/firefox/addon/xss-me/
https://code.google.com/p/browsersec/wiki/Main

 A1: Injection

 A2: Broken Authentication and Session Management

 A3: Cross-Site Scripting (XSS)

 A4: Insecure Direct Object References

 A5: Security Misconfiguration

 A6: Sensitive Data Exposure

 A7: Missing Function Level Access Control

 A8: Cross-Site Request Forgery (CSRF)

 A9: Using Components with Known Vulnerabilities

 A10: Unvalidated Redirects and Forwards

 From OWASP
 A direct object reference occurs when a developer exposes a reference

to an internal implementation object, such as a file, directory, or
database key. Without an access control check or other protection,
attackers can manipulate these references to access unauthorized
data.

 Occurs when one can get access to an object which
shouldn’t be available to the user
 e.g. http://site.com/accountInfo?accno=not_my_account_no

 In order to perform this attack, a family of web parameter
tampering techniques can be used
 Query string tampering
 Form’s hidden field tampering
 Cookie tampering

 Some general guidelines
 Check if all resources are protected well enough and if there is

always an authorization when needed
 Usually automatic tests are not sufficient because they can’t

recognize if sth should be available to the user or not
 So, security code review is the better approach

 Query string tampering
 Simple sample

▪ Link
http://host/product/1332/view
can be replaced by
http://host/product/1335/view

▪ Next, attacker can try
http://host/product/1332/delete

 Mitigations
▪ Nothing – just perform a proper authorization on the server side
▪ Use POST instead of GET
▪ Protect link from change

▪ Encrypting the link
▪ Singing the link by attaching some salted hashcode

 Usability can be poor
 One cannot send link to a friend
 Not SEO friendly

http://host/product/1332/view
http://host/product/1335/view
http://host/product/1332/delete

 Form’s hidden fields tampering
 Simple sample

<input type="hidden " id= "12345” name= "balance" value=
"1200" />

 Mitigations
▪ Rebuild the app and don’t store such information on client side
▪ Use encryption

▪ It’s safe
▪ Doesn’t decrease user experience

 Cookie tampering
 Analogous as in the point above
 There are 3 main problems:

▪ Cookie Theft
▪ Cookie Poisoning
▪ Cross Site Cooking

 https://www.owasp.org/index.php/Top_10_2013-A4-Insecure_Direct_Object_References
 http://www.cisodesk.com/web-application-security/threats-mitigation/insecure-direct-object-references/
 http://cwe.mitre.org/data/definitions/22.html

https://www.owasp.org/index.php/Top_10_2013-A4-Insecure_Direct_Object_References
http://www.cisodesk.com/web-application-security/threats-mitigation/insecure-direct-object-references/
http://cwe.mitre.org/data/definitions/22.html

 A1: Injection

 A2: Broken Authentication and Session Management

 A3: Cross-Site Scripting (XSS)

 A4: Insecure Direct Object References

 A5: Security Misconfiguration

 A6: Sensitive Data Exposure

 A7: Missing Function Level Access Control

 A8: Cross-Site Request Forgery (CSRF)

 A9: Using Components with Known Vulnerabilities

 A10: Unvalidated Redirects and Forwards

 From OWASP
 Good security requires having a secure configuration defined and

deployed for the application, frameworks, application server, web
server, database server, and platform. Secure settings should be
defined, implemented, and maintained, as defaults are often
insecure. Additionally, software should be kept up to date.

 Occurs when vulnerability is available through the
configuration
 e.g. default settings, default accounts, old versions

 It’s related to information leakage and improper error
handling

 Google can index details about DB
 e.g. full connection string with password

 Anything you say can and will be used against you
 Case study:

▪ GET http://pawel.ii.uni.wroc.pl/ HTTP/1.1
Host: pawel.ii.uni.wroc.pl

▪ HTTP/1.1 200 OK
Date: Sun, 05 Mar 2017 08:58:31 GMT
Server: Apache/2.2.21 (Unix) mod_wsgi/3.3 Python/2.4.4 mod_ssl/2.2.21
OpenSSL/0.9.8k PHP/5.2.9
X-Powered-By: PHP/5.2.9
Content-Length: 803
Content-Type: text/html

<!DOCTYPE (...)

 How to protect, part 1

 Don’t expose information about your system

▪ Especially turn off directory browsing

 Remove passwords from the source code

 Delete unused user accounts and pages

 Turn off unused services

 Messages from database or application should be as
minimal as possible

▪ Notice that these information can be indexed by Google!

▪ Also can be stored in logs

 How to protect, part 2
 By default, many systems have a bad configuration, e.g.

▪ Access logs are available to public

▪ Directory listing is enabled

 Be careful with robots.txt – first file used by hackers,
sometimes it’s better to use access control

 Be up-to-date with patches

 Assume internal attacks
▪ Although web.config isn’t available to browsers, it can be read by

employees

 Perform a network penetration test (or other tests) and
harden a server

 https://www.owasp.org/index.php/Top_10_2013-A5-Security_Misconfiguration
 http://cwe.mitre.org/data/definitions/2.html
 http://msdn.microsoft.com/en-us/library/dtkwfdky.aspx

https://www.owasp.org/index.php/Top_10_2013-A5-Security_Misconfiguration
http://cwe.mitre.org/data/definitions/2.html
http://msdn.microsoft.com/en-us/library/dtkwfdky.aspx

 A1: Injection

 A2: Broken Authentication and Session Management

 A3: Cross-Site Scripting (XSS)

 A4: Insecure Direct Object References

 A5: Security Misconfiguration

 A6: Sensitive Data Exposure

 A7: Missing Function Level Access Control

 A8: Cross-Site Request Forgery (CSRF)

 A9: Using Components with Known Vulnerabilities

 A10: Unvalidated Redirects and Forwards

 From OWASP:
 Many web applications do not properly protect sensitive data, such as

credit cards, tax IDs, and authentication credentials. Attackers may
steal or modify such weakly protected data to conduct credit card
fraud, identity theft, or other crimes. Sensitive data deserves extra
protection such as encryption at rest or in transit, as well as special
precautions when exchanged with the browser.

 There are two main steps to mitigate a risk:
 Make an information classification
 Apply appropriate level of protection for every class of

information
 Ways for gathering information
 Exploring the network
 Stealing computers and media
 Breaking into computers and stealing the data

▪ Also using stolen passwords

 Eavesdroping and phishing network and emails
 Social engineering

 How to protect? (part 1 – storage)
 Appropriate strong encryption mechanisms are used

▪ Use AES, Blowfish, 3DES

▪ Use SHA-256, 512 instead of MD5

▪ E.g. salted hashes vs. not salted hashes (3000 years vs. 4
weeks)

 Decryption is available to the authorized users only

 There are appropriate procedures
▪ E.g. a decryption key should be stored in a different place

than an encrypted data 

 Again, encrypt the web.config

 How to protect? (part 2 – communication)
 Of course the TLS should be turned on, but it is important to

ensure that a TLS is needed (because it costs)
 If the TLS is used, all resources should be requested using TLS
 The TLS certificate has to be valid
 In some cases some local certificate authority could be

maintained with the whole environment configuration
▪ e.g. appropriate certificates should be added to each station

 And finally there is not only traffic between the browser and the
web server, but about securing end-2-end information flows
▪ Transport vs. storage
▪ All other components like SQL servers, Web Services
▪ … and many others

 https://www.owasp.org/index.php/Top_10_2013-A6-Sensitive_Data_Exposure

https://www.owasp.org/index.php/Top_10_2013-A6-Sensitive_Data_Exposure

 A1: Injection

 A2: Broken Authentication and Session Management

 A3: Cross-Site Scripting (XSS)

 A4: Insecure Direct Object References

 A5: Security Misconfiguration

 A6: Sensitive Data Exposure

 A7: Missing Function Level Access Control

 A8: Cross-Site Request Forgery (CSRF)

 A9: Using Components with Known Vulnerabilities

 A10: Unvalidated Redirects and Forwards

 From OWASP
 Most web applications verify function level access rights before

making that functionality visible in the UI. However, applications need
to perform the same access control checks on the server when each
function is accessed. If requests are not verified, attackers will be able
to forge requests in order to access functionality without proper
authorization.

 We can consider 3 main areas:
 As stated in OWASP desc., access control only in UI, but

not repeated in server layer
 Privileges elevation: one accessed a system as a common

user, but is able to perform admin oper.
 Don’t forget about files like PDF, DOC, etc.

 It is important to create good security architecture
with e.g.
 RBAC (role based access control),
 SRP (single responsibility principle),
 LPP (least privileges principle)

 It is similar to A4, but here it is about „functions”
protection while A4 is about references to objects

 https://www.owasp.org/index.php/Top_10_2013-A7-Missing_Function_Level_Access_Control
 https://www.owasp.org/index.php/Guide_to_Authorization
 http://lists.owasp.org/pipermail/owasp-topten/2010-August/000694.html

https://www.owasp.org/index.php/Top_10_2013-A7-Missing_Function_Level_Access_Control
https://www.owasp.org/index.php/Guide_to_Authorization
http://lists.owasp.org/pipermail/owasp-topten/2010-August/000694.html

 A1: Injection

 A2: Broken Authentication and Session Management

 A3: Cross-Site Scripting (XSS)

 A4: Insecure Direct Object References

 A5: Security Misconfiguration

 A6: Sensitive Data Exposure

 A7: Missing Function Level Access Control

 A8: Cross-Site Request Forgery (CSRF)

 A9: Using Components with Known Vulnerabilities

 A10: Unvalidated Redirects and Forwards

 From OWASP
 A CSRF attack forces a logged-on victim’s browser to send a forged

HTTP request, including the victim’s session cookie and any other
automatically included authentication information, to a vulnerable
web application. This allows the attacker to force the victim’s browser
to generate requests the vulnerable application thinks are legitimate
requests from the victim.

 CSRF or XSRF: cross site request forgery
 It’s an attack on the server side of the web

application
 Let’s see a sample scenario..

 Let’s see sample scenario
 There is a bank called: The Bank

▪ URL: http://www.bank.com/

 This bank has a site to transfer money:
▪ http://www.bank.com/transfer?toaccount=123&amount=1000

 Alice logged into The Bank site
 Then Eve sent to Alice an email with the following link:

▪ Very happy rabbit with big
eggs

▪ As you can guess, http://bit.ly/veryfunny
resolves to
http://www.bank.com/transfer?toaccount=123&amount=1000

 Alice wants to big eggs and clicks the link
 … and due to the fact that Alice is still logged into The Bank

site, Eve becomes richer

http://www.bank.com/
http://www.bank.com/transfer?toaccount=123&amount=1000
http://bit.ly/veryfunny
http://www.bank.com/transfer?toaccount=123&amount=1000

 In general: attack occurs when a user
unknowingly perform an action

 Important remark: user has to be authorized

 Sometimes very difficult to track

 Everything is performed in the context of
authorized user, action and IP, everything is correct,
oh, beside that user doesn’t know anything

 Usually combined with the XSS attack

 How to force the user to perform what the
attacker wants?
 Send him a link with a request which performs

what the attacker wants
▪ Very
funny

 Using a XSS embed a malicious code on some
pages (e.g. a forum or anything else)
▪ <img src="http://bank/transfer/no=123&amount=1000"

alt="Very funny"/>

 So, if we force to use POST we are safe,
aren’t we?

 As you can guess, it’s not so easy

 It is better to use POST instead of GET, but it
doesn’t protect, because one can embed the
following code (e.g. into iframe):

▪ <div style="display:none">
<form action="http://app.com/delete"
method="POST">
<input type="hidden" name= "id" value=
"1"></form></div>
<script>document.forms[0].submit()</script>

 How to protect?
 Require a confirmation page before executing a potentially

dangerous action
 Require a reauthentication

▪ E.g. in allegro.pl you have to authenticate again before doing sth
sensitive

 Use POST instead of GET although it doesn’t mitigate fully
 Add token to a form

▪ Yahoo calls it crumb

 Crumb
 Should be unique per user

▪ Best approach: should be changed with every request

 Remember, if there is XSS hole, crumb can be stolen!

 POST vs. GET
 GET

▪ One can achieve better user experience
▪ The amount of data is limited to ca. 2KB
▪ On the other hand, all information are shown explicitly in the URL
▪ Don’t use if any sensitive information is sent

▪ e.g. user/password, session ID, …

▪ All requests are stored in logs
▪ … and in a browser’s history

 POST
▪ Use when sensitive data is sent
▪ Use when large amount of data should be sent
▪ Helps prevent duplicate submission
▪ Attacks are harder due to the fact that malicious script can’t be injected directly

▪ but they are not impossible!

▪ Most of search engines don’t crawl POST forms
▪ Prevents unintentional actions

 https://www.owasp.org/index.php/Top_10_2013-A8-Cross-Site_Request_Forgery_(CSRF)

https://www.owasp.org/index.php/Top_10_2013-A8-Cross-Site_Request_Forgery_(CSRF)

 A1: Injection

 A2: Broken Authentication and Session Management

 A3: Cross-Site Scripting (XSS)

 A4: Insecure Direct Object References

 A5: Security Misconfiguration

 A6: Sensitive Data Exposure

 A7: Missing Function Level Access Control

 A8: Cross-Site Request Forgery (CSRF)

 A9: Using Components with Known Vulnerabilities

 A10: Unvalidated Redirects and Forwards

 From OWASP
 Components, such as libraries, frameworks, and other software

modules, almost always run with full privileges. If a vulnerable
component is exploited, such an attack can facilitate serious data loss
or server takeover. Applications using components with known
vulnerabilities may undermine application defenses and enable a
range of possible attacks and impacts.

 From Aspect Security report

Źródło: https://www.aspectsecurity.com/uploads/downloads/2012/03/Aspect-Security-The-Unfortunate-Reality-of-Insecure-Libraries.pdf

 How to protect?
 Monitor security of components used in solution
▪ e.g. in forums, security press

 Establish policy related to component choice
▪ e.g. required vendor to implement ISO certification,

ITIL, SDLC practices, passing security tests,…

 Keep versions updated

 Use software from trusted vendors, if possible

 Implemented scanning tools to detect
components with vulnerabilities

 https://www.owasp.org/index.php/Top_10_2013-A9-Using_Components_with_Known_Vulnerabilities
 https://www.aspectsecurity.com/uploads/downloads/2012/03/Aspect-Security-The-Unfortunate-Reality-of-Insecure-

Libraries.pdf

https://www.owasp.org/index.php/Top_10_2013-A9-Using_Components_with_Known_Vulnerabilities
https://www.aspectsecurity.com/uploads/downloads/2012/03/Aspect-Security-The-Unfortunate-Reality-of-Insecure-Libraries.pdf

 A1: Injection

 A2: Broken Authentication and Session Management

 A3: Cross-Site Scripting (XSS)

 A4: Insecure Direct Object References

 A5: Security Misconfiguration

 A6: Sensitive Data Exposure

 A7: Missing Function Level Access Control

 A8: Cross-Site Request Forgery (CSRF)

 A9: Using Components with Known Vulnerabilities

 A10: Unvalidated Redirects and Forwards

 From OWASP
 Web applications frequently redirect and forward users to other pages

and websites, and use untrusted data to determine the destination
pages. Without proper validation, attackers can redirect victims to
phishing or malware sites, or use forwards to access unauthorized
pages.

 A very good example is here:

 http://www.asp.net/mvc/tutorials/security/preven
ting-open-redirection-attacks

▪ Let’s take a quick look

 How to protect?

 Use good libraries and frameworks

 Perform again a verification of user input

 Create a whitelist of allowed redirections

▪ Or create a strict verification

http://www.asp.net/mvc/tutorials/security/preventing-open-redirection-attacks

 http://www.asp.net/mvc/tutorials/security/preventing-open-redirection-attacks
 http://www.asp.net/mvc/tutorials/security/preventing-open-redirection-attacks
 http://stackoverflow.com/questions/13146032/redirect-to-requested-page-after-authentication

http://www.asp.net/mvc/tutorials/security/preventing-open-redirection-attacks
http://www.asp.net/mvc/tutorials/security/preventing-open-redirection-attacks
http://stackoverflow.com/questions/13146032/redirect-to-requested-page-after-authentication

 OWASP Top 10
 http://www.slideshare.net/xplodersuv/EducauseAnnualWebAppSecTutorialV3

 http://www.slideshare.net/MaureenR/owasp-top-ten-in-practice

 http://www.slideshare.net/tmd800/owasp-top-102013-25184337

http://www.slideshare.net/xplodersuv/EducauseAnnualWebAppSecTutorialV3
http://www.slideshare.net/MaureenR/owasp-top-ten-in-practice
http://www.slideshare.net/tmd800/owasp-top-102013-25184337

