Pawet Rajba
pawel@cs.uni.wroc.pl
http://itcourses.eu/

Application Security
OWASP Top 10

mailto:pawel.rajba@gmail.com
http://kursy24.eu/

Introduction
Security Risk
OWASP Top 10

Why bother?

75% of attacks happen in the Application Layer
(Gartner)

Perfectly secure environment can be
compromised by a security hole in a web
application

There are numerous more difficult instructions
allowing to hack a technology or a product
Reputation is priceless (usuallly)

Enterprises should assume that legal liability for
poor security practices is on the horizon, and act
accordingly

(Gartner recommendation)

Environment

Elements of the web application environment
A Web server with an application

A Network infrastructure where the web server is placed
(with all servers, firewalls, WAFs, IDSs, IPSs, ...)

A Web browser

A Communication channel (most common: HTTP &
HTTPS)

Everything outside the network infrastructure can be
tampered by bad guys
My favourite Fiddler and breakpoints rules (F11 key)
Specialized tools instead of browsers
Scanners

Common threats and attacks

Category

Input
Validation

Authentication
Authorization

Configuration
management

Sensitive
information

Session
management

Cryptography

Farameter
manipulation

Exception
management

Auditing and
logging

Threats / Attacks
Buffer overflow; cross-site scripting; SQL injection; canonicalization

Network eavesdropping ; Brute force attack; dictionary attacks; cookie replay; credential theft
Elevation of privilege; disclosure of confidential data; data tampering; luring attacks

Unauthorized access to administration interfaces; unauthorized access to configuration stores; retrieval of clear text
configuration data; lack of individual accountability; over-privileged process and service accounts

Access sensitive data in storage; network eavesdropping; data tampering

Session hijacking; session replay; man in the middle
Poor key generation or key management; weak or custom encryption

Query string manipulation; form field manipulation; cookie manipulation; HT TP header manipulation

Information disclosure: denial of service

User denies performing an operation; attacker exploits an application without trace; attacker covers his or her tracks

Zrédto: http://en.wikipedia.org/wiki/Application _security

http://en.wikipedia.org/wiki/Application_security

Some Initial terms

Attack vector

A path or way in which a hacker can access computer
system and exploit/reach a vulnerability

It can be one vulnerability with several attack vectors

More: http://searchsecurity.techtarget.com/definition/attack-vector
Weakness Prevalence

How much a weakness is spread around
Weakness detectability

s it easy to find the weakness in an application?
Technical and business impact

http://searchsecurity.techtarget.com/definition/attack-vector

Security risk

Possible path: can be easy, can be difficult

Threat Attack Security Security Technical Business
Agents Vectors Weaknesses Controls Impacts Impacts
% Attack Weakness Control Impact J
Asset
% Weakness Control - Impact
Function
Attack Weakness Impact

Asseat

Weakness HCnntrnl

Zrédto: https://www.owasp.org/index.php/Top 10 2013-Risk

https://www.owasp.org/index.php/Top_10_2013-Risk

Security Risk

Every risk is assessed according to the following schema:

Weakn
Threat Agents Attack Vectors S Technicallmpacts Business Impacts

Detectability

App / Business

App Specific AVERAGE COMMON AVERAGE MODERATE -
Specific

DIFFICULT UNCOMMON DIFFICULT MINOR

The risk calculated as follows (an example):

Threat Agents Attack Vectors Security Weakness

. . Exploitability Impact Application /
Application S fi
e AVERAGE MODERATE Business Specific
Likelihood Rating: 1 * 9
(Average of Exploitability, Prevalence and Detectability)

Risk Ranking: 2
(Likelihood * Impact)

Zrédta: https://www.owasp.org/index.php/Top 10 2013-Risk | https://www.owasp.org/index.php/Top 10 2013-Note About Risks

https://www.owasp.org/index.php/Top_10_2013-Risk
https://www.owasp.org/index.php/Top_10_2013-Note_About_Risks

OWASP TOP 10

A project from OWASP

OWASP =

The Open Web Application Security Project
OWASP TOP 10 is a list of the 10 Most Critical
Web Application Security Risks

Refreshed every 3rd year

Last version is from 2013

A direct link:

https://www.owasp.org/index.php/Top 10 2013-Top 10

https://www.owasp.org/index.php/Top_10_2013-Top_10

OWASP TOP 10

A1: Injection

A2: Broken Authentication and Session Management
A3: Cross-Site Scripting (XSS)

Ay: Insecure Direct Object References

As: Security Misconfiguration

Ab6: Sensitive Data Exposure

A7: Missing Function Level Access Control

A8: Cross-Site Request Forgery (CSRF)

Ag: Using Components with Known Vulnerabilities
A1o: Unvalidated Redirects and Forwards

Injections

From OWASP:

Injection flaws, such as SQL, OS, and LDAP injection occur
when untrusted data is sent to an interpreter as part of a
command or query. The attacker’s hostile data can trick
the interpreter into executing unintended commands or
accessing data without proper authorization.

Threat Agents

Application Specific

Attack Vectors

Consider anyone who can
send untrusted data to the
system, including external
users, internal users, and
administrators

Attacker sends simple text-
based attacks that exploit
the syntax of the targeted
interpreter. Almost any
source of data can be an
injection vectar, including
internal sources

Security Weakness

Prevalence Detectability
COMMON AVERAGE

Injection flaws &7 occur when an application sends
untrusted data to an interpreter. Injection flaws are very
prevalent, particularly in legacy code. They are often found
in SQL, LDAP, Xpath, or MoSQL queries; O3 commands
KML parsers, SMTP Headers, program arguments, etc
Injection flaws are easy to discover when examining code
but frequently hard to discover via testing. Scanners and
fuzzers can help attackers find injection flaws

Technical Impacts

Injection can result in data
loss or corruption, lack of
accountability, or denial of
access. Injection can
sometimes lead to complete
host takeover

Business Impacts

Application / Business
Specific

Consider the business value
of the affected data and the
platform running the
interpreter. All data could be
stolen, modified, or deleted
Could your reputation be
harmed?

Injections

Most popular: SQL injection
Keep in mind that there are other ones:

LDAP injections
XPATH injections
Command injections
DOM injections
JSON injections
LOG spoofing

But we will focus on SQL injections

SQL Injection

Occurs in the database layer of an application
Simple sample
QUERY: "SELECT * FROM [Users] WHERE

UserName =""+Request["User"]+" AND
Password=lll+RequeSt[llPWdII]+IIIII

Malicious UserName inputs:
'OR 1=1; --
"DROP TABLE [Users]; SELECT "1
Threats

Leak of information (at best)
Create, update or delete data
Grant access to hacker

Take over the OS

SQL Injection

A slightly dangerous attacks

Creating Windows account

SELECT * FROM [Users] WHERE UserName ="; exec
master..xp_cmdshell 'net users username password /add'; --
'AND Password="

Adding this account to the Administrators group

SELECT * FROM [Users] WHERE UserName ="; exec
master..xp_cmdshell 'net localgroup Administrators username
/add'; --

' AND Password="

Be carefull with stored procedure

Putting simply SQL code into stored procedure doesn’t
make it secure

...but can increase a security level

SQL Injection

Blind SQL injection

Occurs when application is vulnerable, but the results are
not visible to the attacker

e.g. page doesn’t display correctly, or some different content
appears

It's a time-consuming type of attack

Sample scenario of such attack
Try to check if the site is vulnerable
http://www.somesite.com/id=22 and 1=2

If something changed, e.g. an image or anything else is missing, we can
continue

Check no. of returned columns
http://www.somesite.com/id=22 order by n
where instead of n you put 1,2,3,...

Check a vulnerable column
http://www.somesite.com/id=-1 union select 1,2,version(), 4,5

... and continue guessing until you shoot something interesting

SQL Injection

How to protect?

Definitely use a parametrized statement:
SELECT * FROM [Users] WHERE UserName =? AND
PASSWORD =7

Then sp_executesql is used (in case SQLServer)
But some parts are not parametrized then you must be careful
Escape all potential risk fragments (e.g. —; ' "\ etc.)

Validate input
Strong typing
e.g. id is an int — check whether it is really int

Business logic
e.g if an account no. is expected, check precisely if it's the account no.

Using stored procedures don't mitigate risk, but can reduce it
By e.g. typed parameters

Use the least privileges principle, i.e. run a query in a context of
a user with least privileges needed to perform a specified action

References

SQL Injection

http://www.unixwiz.net/techtips/sql-injection.html

http://ferruh.mavituna.com/sql-injection-cheatsheet-oku/

http://weblogs.sqlteam.com/mladenp/archive/2011/02/16/sgl-server-sql-injection-from-start-to-end.aspx

http://www.securiteam.com/securityreviews/sDPoN1P76E.html

http://blogs.msdn.com/b/raulga/archive/2007/01/04/dynamic-sql-sql-injection.aspx

http://www.securiteam.com/securityreviews/sDPoN1P76E.html

http://download.oracle.com/oll/tutorials/SQLInjection/index.htm

http://www.sommarskoqg.se/dynamic_sqgl.html

http://msdn.microsoft.com/en-us/library/cc716760.aspx

Blind SQL Injection sample scenarios

https://www.owasp.org/index.php/Blind SQL Injection

http://www.breakthesecurity.com/2010/12/hacking-website-using-sqgl-injection.html

http://forum.internot.org/web-hacking-war-games/818-blind-sql-injection.html

http://www.unixwiz.net/techtips/sql-injection.html
http://ferruh.mavituna.com/sql-injection-cheatsheet-oku/
http://weblogs.sqlteam.com/mladenp/archive/2011/02/16/sql-server-sql-injection-from-start-to-end.aspx
http://www.securiteam.com/securityreviews/5DP0N1P76E.html
http://blogs.msdn.com/b/raulga/archive/2007/01/04/dynamic-sql-sql-injection.aspx
http://www.securiteam.com/securityreviews/5DP0N1P76E.html
http://download.oracle.com/oll/tutorials/SQLInjection/index.htm
http://www.sommarskog.se/dynamic_sql.html
http://msdn.microsoft.com/en-us/library/cc716760.aspx
http://www.breakthesecurity.com/2010/12/hacking-website-using-sql-injection.html
http://www.breakthesecurity.com/2010/12/hacking-website-using-sql-injection.html
http://forum.intern0t.org/web-hacking-war-games/818-blind-sql-injection.html

XPath & LDAP Injection

Quick review

https://www.owasp.org/index.php/XPATH Injection

https://www.owasp.org/index.php/LDAP injection

https://www.owasp.org/index.php/XPATH_Injection
https://www.owasp.org/index.php/LDAP_injection

OWASP TOP 10

A1: Injection

A2: Broken Authentication and Session Management
A3: Cross-Site Scripting (XSS)

Ay: Insecure Direct Object References

As: Security Misconfiguration

Ab6: Sensitive Data Exposure

A7: Missing Function Level Access Control

A8: Cross-Site Request Forgery (CSRF)

Ag: Using Components with Known Vulnerabilities
A1o: Unvalidated Redirects and Forwards

Broken Authentication

and Session Management

From OWASP:

Application functions related to authentication and
session management are often not implemented
correctly, allowing attackers to compromise passwords,
keys, or session tokens, or to exploit other implementation
flaws to assume other users’ identities.

Threat Agents

Application Specific

Attack Vectors

Exploitability
AVERAGE

Security Weakness

Detectability
AVERAGE

Consider anonymous
external attackers, as well
as users with their own
accounts, who may attempt
to steal accounts from
others. Also consider
insiders wanting to disguise
their actions

Attacker uses leaks or flaws
in the authentication or
session management
functions (e.g., exposed
accounts, passwords
session IDs) to impersonate
USErs

Developers frequently build custom authentication and
session management schemes, but building these
correctly is hard. As a result, these custom schemes
frequently have flaws in areas such as logout, password
management, timeouts, remember me, secret question
account update, etc. Finding such flaws can sometimes
be difficult, as each implementation is unigue

Technical Impacts

Such flaws may allow some
or even all accounts to be
attacked. Once successful
the attacker can do anything
the victim could do
Frivileged accounts are
frequenthy targeted

Business Impacts

Application / Business
Specific

Consider the business value
of the affected data or
application functions

Also consider the business
impact of public exposure of
the vulnerability

Broken Authentication

and Session Management

Where are the threats?

User credentials aren’t protected enough and can be stolen
e.g. SQL Injection, guessing or just brute force attack, keyloggers
Credentials can be guessed or overwritten through weak
account management functions
e.g., account creation, change password, recover password

Session IDs
are exposed in the URL (e.g., URL rewriting).
are vulnerable to session fixation attacks.

don’t timeout, or user sessions or authentication tokens, particularly
single sign-on (SS0O) tokens, aren’t properly invalidated during logout.

aren't rotated after successful login.

Passwords, session IDs, and other credentials are sent over
unencrypted connections (man-in-the-middle attack)

Zrédto: https://www.owasp.org/index.php/Top 10 2013-A2-Broken Authentication and Session Management

https://www.owasp.org/index.php/Top_10_2013-A2-Broken_Authentication_and_Session_Management

Broken Authentication

and Session Management

How to protect ourselves?

Credentials should be stored using hashing or encryption
Also credentials to databases
Consider using ,slow” function (e.g. PBKDF2) — prevents brute force
Mandatory using salt in hashes — prevent rainbow tables attack
Credentials shouldn’t be easy to guess or overwrite
Some policies should be applied
Brute force (e.g. weak passwords)
Be carefull with password recovery —some approaches can be risky
TLS should be used to send sensitive information (including credentials and session IDs)
Ensure certificate is valid
Consider different approach than user/password
PKI, Fingerprint
Digipass, one-time codes
Masked password (a little bit controversial)
Multi-factor authentication
Session management should be done carefully
Not in URL,rotation of session’s Ids, using good timeouts and proper logout
Sometimes it's difficult to protect

e.g. keyloggers, but a display keyboard can be solution...
... ORLY?Who will use it??

Broken Authentication

and Session Management

Session fixation

Victim

/

http://website.kom/
login.php?sessionid=abcd

@ Login

' d
sessionid=abcd @

POST account.php

|_Cookie: abcd |
attacker (&) >

Zrédto: https://www.owasp.org/index.php/Session_fixation

https://www.owasp.org/index.php/Session_fixation

Broken Authentication

and Session Management

Session fixation

Other similar possibilities
XSS on client side

http://website.kom/<script>document.cookie="sessionid=abcd”:</script>

XSS on DOM

http://website.kon/<meta http-equiv=Set-Cookie content="sessionid=abcd”>

Inse.rt HTTP header

HTTPM.1 200 OK

Server. Apache-Coyotef1.1

Pragma: No-cache

Cache-Control: no-cache

Expires: Wed, 31 Dec 1969 21:00:00 BRT
Content-Type: text/ihtml;charset=IS0-8859-1
Date: Thu, 23 Aug 2007 14:25:01 GMT
Set-Cookie: sessionid=ahcd

Zrédto: https://www.owasp.org/index.php/Session fixation

http://website.kom/<script>document.cookie=”sessionid=abcd”;</script
https://www.owasp.org/index.php/Session_fixation

References

Session fixation

https://www.owasp.org/index.php/Session fixation

http://en.wikipedia.org/wiki/Session_fixation

https://www.owasp.org/index.php/Session Management Cheat Sheet

http://software-security.sans.org/blog/2009/06/14/session-attacks-and-aspnet-part-1/

http://software-security.sans.org/blog/2009/06/24/session-attacks-and-aspnet-part-2

https://www.owasp.org/index.php/Session_fixation
http://en.wikipedia.org/wiki/Session_fixation
https://www.owasp.org/index.php/Session_Management_Cheat_Sheet
http://software-security.sans.org/blog/2009/06/14/session-attacks-and-aspnet-part-1/
http://software-security.sans.org/blog/2009/06/24/session-attacks-and-aspnet-part-2

OWASP TOP 10

A1: Injection

A2: Broken Authentication and Session Management
A3: Cross-Site Scripting (XSS)

Ay: Insecure Direct Object References

As: Security Misconfiguration

Ab6: Sensitive Data Exposure

A7: Missing Function Level Access Control

A8: Cross-Site Request Forgery (CSRF)

Ag: Using Components with Known Vulnerabilities
A1o: Unvalidated Redirects and Forwards

Cross-Site Scripting (XSS)

From OWASP

XSS flaws occur whenever an application takes untrusted data and
sends it to a web browser without proper validation or escaping. XSS
allows attackers to execute scripts in the victim’s browser which can
hijack user sessions, deface web sites, or redirect the user to malicious
sites.

Threat Agents

Application Specific

Attack Vectors

Exploitability
AVERAGE

Security Weakness

Consider anyone who can
send untrusted data to the
system, including external
users, internal users, and
administrators

Attacker sends text-based
attack scripts that exploit
the interpreter in the
browser. Almaost any source
of data can be an attack
vector, including internal
sources such as data from
the database

X3S is the most prevalent web application security flaw

#S5 flaws occur when an application includes user
supplied data in a page sent to the browser without
properly validating or escaping that content. There are two
different types of XS5 flaws: 1) Stored and 2) Reflected
and each of these can occur on the a) Server or b) on the
Client

Detection of most Server XSS flaws is fairly easy via
testing or code analysis. Client XSS 1= very difficult to
identify

Technical Impacts

Impact
MODERATE

Business Impacts

Application [Business
Specific

Attackers can execute
scripts in a victim's browser
to hijack user sessions
deface web sites, insert
hostile content, redirect
users, hijack the user's
browser using malware, etc

Consider the business value
of the affected system and
all the data it processes

Also consider the business
impact of public exposure of
the vulnerability

Cross-Site Scripting (XSS)

Same Origin Policy

Define a rule where only requests to the same
,site” are allowed

It's applied mostly to JavaScript code

Compared URL Cutcome Reason
http:/iwww.example.com/dir/page2_html Success | Same protocol and host
http:/iwww.example.com/dir/other html Success | Same protocol and host

http:/lusemame:password@www.example.com/dirZ/other html | Success Same protocol and host

http:/fwnw_example.com:81/dirfother html Failure | Same protocol and host but different port
https:{fwww_example com/dirfother_html Failure | Different protocol
http:/fen.example.com/dir/ather html Failure | Different host
http-/fexample.com/dir/other html Failure |Different host (exact match required)
http-/fv2. www.example.com/dir/other html Failure |Different host (exact match required)

http:/fwnnw_example . com:80/dirfother html FPort explicit. Depends on implementation in browser

Cross-Site Scripting (XSS)

Relaxing SOP

Cross-origin resource sharing

Let's review

http://en.wikipedia.org/wiki/Cross-origin resource sharing

JSONP

Let's review
https://en.wikipedia.org/wiki/JSONP

http://en.wikipedia.org/wiki/Cross-origin_resource_sharing
https://en.wikipedia.org/wiki/JSONP

Cross-Site Scripting (XSS)

XSS stands for cross site scripting

Attack on a the client side (web browser)
Force a web browser to execute an unwanted JavaScript
code

There are 3 main types of attacks

DOM based XSS (type o)

The code is executed as a result of dynamic modification of a DOM
by another JavaScript code

Reflected (type1)

The code is attachted somehow to a link and the user is tricked to
follow this link

Stored or persistent (type 2)

The code is stored in a database and shown to a user while a web
page is opening

Cross-Site Scripting (XSS)

Classic scenarios

Someone is tricked to follow a link with malicious
code attached (type o and 1)

Hacker adds a malicious code in a blog comment

Everyone who opens an article, executes malicious code

Cross-Site Scripting (XSS)

What the attacker can do using XSS hole

Steal your cookies (sometimes they can be really delicious ©)
Intercept your login and password
Generally embed any malware
XSS is a start point for other attacks (e.g. CSRF)
How can we protect ourselves?
Escape everything sent to a browser
Sometimes we want to sent an unescaped stuff — it should be then under full control
Use frameworks or tools to do it automatically
In this case a good knowledge of the tools is important
Validate any input provided by an user
Use whitelists instead of blacklists
Use httpOnly
XSS regarding the ASP.NET
http://msdn.microsoft.com/en-us/library/ff649310.aspx
Other good resources:

https://www.owasp.org/index.php/XSS (Cross Site Scripting) Prevention Cheat Sheet
https://www.owasp.org/index.php/XSS Filter Evasion Cheat Sheet

http://msdn.microsoft.com/en-us/library/ff649310.aspx
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet

Cross-Site Scripting (XSS)

But how information can be stolen?

Requests are limited by the same origin policy and
alerts don't look dangerous...

... but we can use img and iframe tags

... and there are many other techniques
Surprising how many big companies has been
xssed

Nice web site: http://xssed.com/

http://xssed.com/

References

XSS

https://www.owasp.org/index.php/XSS (Cross Site Scripting) Prevention Cheat Sheet

https://www.owasp.org/index.php/XSS Filter Evasion Cheat Sheet

http://projects.webappsec.org/w/page/13246920/Cross%20Site%20Scripting

http://excess-xss.com/

http://www.webappsec.org/projects/articles/o71105.shtml

https://www.owasp.org/index.php/XSS Filter Evasion Cheat Sheet

https://www.acunetix.com/websitesecurity/xss/
http://www.isaca.org/chaptersg/Venice/Events/Documents/ISACAVENICE-OWASP-UNIVE-2013-1%20-%20DiPaola.pdf
http://www.thegeekstuff.com/2012/02/xss-attack-examples/

https://addons.mozilla.org/en-US/firefox/addon/xss-me/

Browser Security Handbook

https://code.google.com/p/browsersec/wiki/Main

http://excess-xss.com/
http://excess-xss.com/
http://excess-xss.com/
http://excess-xss.com/
http://www.webappsec.org/projects/articles/071105.shtml
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet
https://www.acunetix.com/websitesecurity/xss/
http://www.isaca.org/chapters5/Venice/Events/Documents/ISACAVENICE-OWASP-UNIVE-2013-1 - DiPaola.pdf
http://www.thegeekstuff.com/2012/02/xss-attack-examples/
https://addons.mozilla.org/en-US/firefox/addon/xss-me/
https://code.google.com/p/browsersec/wiki/Main

OWASP TOP 10

A1: Injection

A2: Broken Authentication and Session Management
A3: Cross-Site Scripting (XSS)

Ay: Insecure Direct Object References

As: Security Misconfiguration

Ab6: Sensitive Data Exposure

A7: Missing Function Level Access Control

A8: Cross-Site Request Forgery (CSRF)

Ag: Using Components with Known Vulnerabilities
A1o: Unvalidated Redirects and Forwards

Insecure Direct Object References

From OWASP

A direct object reference occurs when a developer exposes a reference
to an internal implementation object, such as a file, directory, or
database key. Without an access control check or other protection,
attackers can manipulate these references to access unauthorized
data.

Threat Agents

Application Specific

Attack Vectors

Consider the types of
users of your system. Do
any users have anly
partial access to certain
types of system data?

Attacker, who is an
authorized system user
simply changes a
parameter value that
directly refers to a
system object to another
object the userisn't
authorized for. |s access
granted?

Security Weakness

Prevalence
COMMOM

Applications frequently use the actual name or key
of an object when generating web pages
Applications dan't always verify the user is
authorized for the target object. This results in an
insecure direct object reference flaw. Testers can
easily manipulate parameter values to detect such
flaws. Code analysis quickly shows whether
authorization is properly verified

Technical Impacts

Impact
MODERATE

Business Impacts

Application / Business
Specific

Such flaws can
compromise all the data
that can be referenced by
the parameter. Unless
object references are
unpredictable, it's easy
for an attacker to access
all available data of that

type

Consider the business
value of the exposed
data

Also consider the
business impact of public
exposure of the
vulnerability

Insecure Direct Object References

Occurs when one can get access to an object which
shouldn’t be available to the user

e.g. http://site.com/accountinfo?accno=not_my_account_no
In order to perform this attack, a family of web parameter
tampering techniques can be used

Query string tampering
Form’s hidden field tampering

Cookie tampering
Some general guidelines

Check if all resources are protected well enough and if there is
always an authorization when needed

Usually automatic tests are not sufficient because they can't
recognize if sth should be available to the user or not

So, security code review is the better approach

Insecure Direct Object References

Query string tampering
Simple sample
Link
http://host/product/a332/view
can be replaced by
http://host/product/a335/view

Next, attacker can try
http://host/product/a332/delete

Mitigations
Nothing —just perform a proper authorization on the server side

Use POST instead of GET

Protect link from change
Encrypting the link
Singing the link by attaching some salted hashcode
Usability can be poor
One cannot send link to a friend
Not SEO friendly

http://host/product/1332/view
http://host/product/1335/view
http://host/product/1332/delete

Insecure Direct Object References

Form'’s hidden fields tampering
Simple sample
<input type="hidden " id="12345" name="balance" value=
||1200|| />
Mitigations
Rebuild the app and don’t store such information on client side

Use encryption
It's safe
Doesn’t decrease user experience

Cookie tampering
Analogous as in the point above

There are 3 main problems:
Cookie Theft
Cookie Poisoning
Cross Site Cooking

References

https://www.owasp.org/index.php/Top 10 2013-As4-Insecure Direct Object References
http://www.cisodesk.com/web-application-security/threats-mitigation/insecure-direct-object-references/
http://cwe.mitre.org/data/definitions/22.html

https://www.owasp.org/index.php/Top_10_2013-A4-Insecure_Direct_Object_References
http://www.cisodesk.com/web-application-security/threats-mitigation/insecure-direct-object-references/
http://cwe.mitre.org/data/definitions/22.html

OWASP TOP 10

A1: Injection

A2: Broken Authentication and Session Management
A3: Cross-Site Scripting (XSS)

Ay: Insecure Direct Object References

As: Security Misconfiguration

Ab6: Sensitive Data Exposure

A7: Missing Function Level Access Control

A8: Cross-Site Request Forgery (CSRF)

Ag: Using Components with Known Vulnerabilities
A1o: Unvalidated Redirects and Forwards

Security Misconfiguration

From OWASP

Good security requires having a secure configuration defined and
deployed for the application, frameworks, application server, web
server, database server, and platform. Secure settings should be
defined, implemented, and maintained, as defaults are often
insecure. Additionally, software should be kept up to date.

Threat Agents

Application Specific

Attack Vectors

Consider anonymous
external attackers as well
as users with their own
accounts that may attempt
to compromise the system
Also consider insiders
wanting to disguise their
actions

Attacker accesses default
accounts, unused pages
unpatched flaws
unprotected files and
directories, etc. to gain
unauthorized access to or
knowledge of the system

Security Weakness

Prevalence
COMMON

Security misconfiguration can happen at any level of an
application stack, including the platform, web server
application server, database, framewark, and custom
code. Developers and system administrators need to
wark together to ensure that the entire stack is
configured properly. Automated scanners are useful for
detecting missing patches, misconfigurations, use of
default accounts, unnecessary sernvices, etc

Technical Impacts

Impact
MODERATE

Business Impacts

Application [Business
Specific

The system could be
completely compromised
without you knowing it. All
of yvour data could be stolen
or modified slowly over
time

Recovery costs could be
expensive

The system could be
completely compromised
without you knowing it All
your data could be stolen
or maodified slowly aver
time

Recovery costs could be
EXpensive

Security Misconfiguration

Occurs when vulnerability is available through the
configuration

e.g. default settings, default accounts, old versions

It's related to information leakage and improper error
handling
Google can index details about DB

e.g. full connection string with password
Anything you say can and will be used against you

Case study:

GET http://pawel.ii.uni.wroc.pl/ HTTP/1.1
Host: pawel.ii.uni.wroc.pl

HTTP/1.1 200 OK

Date: Sun, 05 Mar 2017 08:58:31 GMT

Server: Apache/2.2.21 (Unix) mod wsgi/3.3 Python/2.4.4 mod ssl/2.2.21
OpenSSL/0.9.8k PHP/5.2.9 - -
X-Powered-By: PHP/5.2.9

Content-Length: 803

Content-Type: text/html

<!DOCTYPE (...)

Security Misconfiguration

How to protect, part1
Don‘t expose information about your system

Especially turn off directory browsing

Remove passwords from the source code
Delete unused user accounts and pages
Turn off unused services

Messages from database or application should be as
minimal as possible
Notice that these information can be indexed by Google!
Also can be stored in logs

Security Misconfiguration

How to protect, part 2
By default, many systems have a bad configuration, e.qg.
Access logs are available to public
Directory listing is enabled

Be careful with robots.txt —first file used by hackers,
sometimes it's better to use access control

Be up-to-date with patches

Assume internal attacks
Although web.config isn't available to browsers, it can be read by
employees
Perform a network penetration test (or other tests) and
harden a server

References

https://www.owasp.org/index.php/Top 10 2013-A5-Security Misconfiguration
http://cwe.mitre.org/data/definitions/2.html
http://msdn.microsoft.com/en-us/library/dtkwfdky.aspx

https://www.owasp.org/index.php/Top_10_2013-A5-Security_Misconfiguration
http://cwe.mitre.org/data/definitions/2.html
http://msdn.microsoft.com/en-us/library/dtkwfdky.aspx

OWASP TOP 10

A1: Injection

A2: Broken Authentication and Session Management
A3: Cross-Site Scripting (XSS)

Ay: Insecure Direct Object References

As: Security Misconfiguration

Ab6: Sensitive Data Exposure

A7: Missing Function Level Access Control

A8: Cross-Site Request Forgery (CSRF)

Ag: Using Components with Known Vulnerabilities
A1o: Unvalidated Redirects and Forwards

Sensitive Data Exposure

From OWASP:

Many web applications do not properly protect sensitive data, such as
credit cards, tax IDs, and authentication credentials. Attackers may
steal or modify such weakly protected data to conduct credit card
fraud, identity theft, or other crimes. Sensitive data deserves extra
protection such as encryption at rest or in transit, as well as special
precautions when exchanged with the browser.

Threat Agents

Application Specific

Attack Vectors

Exploitability
DIFFICULT

Security Weakness

Prevalence
UNCOMMON

Detectability
AVERAGE

Consider who can gain
access to your sensitive
data and any backups of
that data. This includes the
data at rest, in transit, and
even in your customers’
browsers. Include both
external and internal
threats

Attackers typically don't
break crypto directly. They
break something else
such as steal keys, do
man-in-the-middle attacks
or steal clear text data off
the server, while in transit
or from the user's browser

The most commaon flaw is simply not encrypting
sensitive data. When crypto is employed, weak key
generation and management, and weak algorithm usage
is comman, particularly weak password hashing
technigues. Browser weaknesses are very common and
easy to detect, but hard to exploit on a large scale
External attackers have difficulty detecting server side
flaws due to limited access and they are also usually
hard to exploit

Technical Impacts

Failure frequently
compromises all data that
should have been
protected. Typically, this
information includes
sensitive data such as
health records, credentials
personal data, credit cards
etc

Business Impacts

Application / Business
Specific

Consider the business
value of the lost data and
impact to your reputation
What is your legal liability if
this data is exposed? Also
consider the damage to
your reputation

Sensitive Data Exposure

There are two main steps to mitigate a risk:
Make an information classification

Apply appropriate level of protection for every class of
information

Ways for gathering information
Exploring the network
Stealing computers and media

Breaking into computers and stealing the data
Also using stolen passwords

Eavesdroping and phishing network and emails
Social engineering

Sensitive Data Exposure

How to protect? (part 1 —storage)

Appropriate strong encryption mechanisms are used
Use AES, Blowfish, 3DES
Use SHA-256, 512 instead of MDg

E.g. salted hashes vs. not salted hashes (3000 years vs. 4
weeks)

Decryption is available to the authorized users only

There are appropriate procedures

E.g. a decryption key should be stored in a different place
than an encrypted data ©

Again, encrypt the web.config

Sensitive Data Exposure

How to protect? (part 2 — communication)

Of course the TLS should be turned on, but it is important to
ensure that aTLS is needed (because it costs)

If the TLS is used, all resources should be requested using TLS
The TLS certificate has to be valid
In some cases some local certificate authority could be
maintained with the whole environment configuration
e.g. appropriate certificates should be added to each station
And finally there is not only traffic between the browser and the
web server, but about securing end-2-end information flows
Transport vs. storage
All other components like SQL servers, Web Services
... and many others

References

https://www.owasp.org/index.php/Top 10 2013-A6-Sensitive Data Exposure

https://www.owasp.org/index.php/Top_10_2013-A6-Sensitive_Data_Exposure

OWASP TOP 10

A1: Injection

A2: Broken Authentication and Session Management
A3: Cross-Site Scripting (XSS)

Ay: Insecure Direct Object References

As: Security Misconfiguration

Ab6: Sensitive Data Exposure

A7: Missing Function Level Access Control

A8: Cross-Site Request Forgery (CSRF)

Ag: Using Components with Known Vulnerabilities
A1o: Unvalidated Redirects and Forwards

Missing Function Level Access

Cont

rol

From OWASP

Most web applications verify function level access rights before
making that functionality visible in the Ul. However, applications need
to perform the same access control checks on the server when each
function is accessed. If requests are not verified, attackers will be able
to forge requests in order to access functionality without proper
authorization.

Threat Agents

Application Specific

Attack Vectors

Anyone with network
access can send your
application a reguest

Could anonymous users
access private functionality
or regular users a privileged
function?

Attacker, who is an
authorized system user
simply changes the URL or
a parameter to a privileged
function. Is access
granted? Anonymous users
could access private
functions that aren't
protected

Security Weakness

Detectability
AVERAGE

Prevalence
COMMOMN

Technical Impacts

Impact
MODERATE

Business Impacts

Application [Business
Specific

Applications do not always protect application functions
properly. Sometimes, function level protection is
managed via configuration, and the system is
misconfigured. Sometimes, developers must include the
proper code checks, and they forget

Detecting such flaws is easy. The hardest part is
identifying which pages (URLs) or functions exist to
attack

Such flaws allow attackers
to access unauthorized
functionality. Administrative
functions are key targets
faor this type of attack

Consider the business
value of the exposed
functions and the data they
Process

Also consider the impact to
your reputation if this
vulnerability became public

Missing Function Level Access

Control

We can consider 3 main areas:

As stated in OWASP desc., access control only in Ul, but
not repeated in server layer

Privileges elevation: one accessed a system as a common
user, but is able to perform admin oper.

Don’t forget about files like PDF, DOC, etc.
It is important to create good security architecture

with e.qg.

RBAC (role based access control),

SRP (single responsibility principle),

LPP (least privileges principle)
It is similar to A4, but here it is about ,,functions”
protection while A4 is about references to objects

References

https://www.owasp.org/index.php/Top 10 2013-A7-Missing Function Level Access Control
https://www.owasp.org/index.php/Guide to Authorization
http://lists.owasp.org/pipermail/owasp-topten/2010-Auqust/o00694.html

https://www.owasp.org/index.php/Top_10_2013-A7-Missing_Function_Level_Access_Control
https://www.owasp.org/index.php/Guide_to_Authorization
http://lists.owasp.org/pipermail/owasp-topten/2010-August/000694.html

OWASP TOP 10

A1: Injection

A2: Broken Authentication and Session Management
A3: Cross-Site Scripting (XSS)

Ay: Insecure Direct Object References

As: Security Misconfiguration

Ab6: Sensitive Data Exposure

A7: Missing Function Level Access Control

A8: Cross-Site Request Forgery (CSRF)

Ag: Using Components with Known Vulnerabilities
A1o: Unvalidated Redirects and Forwards

Cross-Site Request Forgery (CSRF)

From OWASP

A CSRF attack forces a logged-on victim’s browser to send a forged
HTTP request, including the victim’s session cookie and any other
automatically included authentication information, to a vulnerable
web application. This allows the attacker to force the victim’s browser
to generate requests the vulnerable application thinks are legitimate

Threat Agents

Application Specific

requests from the victim.

Attack Vectors

Exploitability
AVERAGE

Security Weakness

Prevalence
COMMON

Consider anyone who can
load content into your
users’ browsers, and thus
force them to submit a
request to your website
Any website or other
HTML feed that your
users access could do
this

Attacker creates forged
HTTP requests and tricks
a victim into submitting
them via image tags

#55, or numerous other
technigues. If the user is
authenticated, the attack
succeeds

CSRF & takes advantage the fact that most web
apps allow attackers to predict all the details of a
particular action

Because browsers send credentials like session
cookies automatically, attackers can create
malicious web pages which generate forged requests
that are indistinguishable from legitimate ones

Detection of CSREF flaws is fairly easy via penetration
testing or code analysis

Impact
MODERATE

Technical Impacts Business Impacts

Application [Business
Specific

Attackers can trick
victims into performing
any state changing
operation the victim is
authorized to perform
e.g., updating account
details, making
purchases, logout and
even login

Consider the business
value of the affected data
or application functions
Imagine not being sure if
users intended to take
these actions

Consider the impact to
your reputation

Cross-Site Request Forgery (CSRF)

CSRF or XSRF: cross site request forgery
It's an attack on the server side of the web
application

Let's see a sample scenario..

Cross-Site Request Forgery (CSRF)

Let's see sample scenario

There is a bank called: The Bank
URL: http://www.bank.com/

This bank has a site to transfer money:
http://www.bank.com/transfer?toaccount=123&amount=1000

Alice logged into The Bank site

Then Eve sent to Alice an email with the following link:

Very happy rabbit with big
eggs

As you can guess, http://bit.ly/veryfunny
resolves to
http://www.bank.com/transfer?toaccount=123&amount=1000

Alice wants to big eggs and clicks the link

... and due to the fact that Alice is still logged into The Bank
site, Eve becomes richer

http://www.bank.com/
http://www.bank.com/transfer?toaccount=123&amount=1000
http://bit.ly/veryfunny
http://www.bank.com/transfer?toaccount=123&amount=1000

Cross-Site Request Forgery (CSRF)

In general: attack occurs when a user
unknowingly perform an action

Important remark: user has to be authorized
Sometimes very difficult to track

Everything is performed in the context of
authorized user, action and IP, everything is correct,
oh, beside that user doesn’t know anything

Usually combined with the XSS attack

Cross-Site Request Forgery (CSRF)

How to force the user to perform what the
attacker wants?

Send him a link with a request which performs
what the attacker wants

<d
href="http://bank/transfer/no=123&amount=1000">Very
funny
Using a XSS embed a malicious code on some
pages (e.g. a forum or anything else)

<img src="http://bank/transfer/no=123&amount=1000"
alt="Very funny"/>

Cross-Site Request Forgery (CSRF)

So, if we force to use POST we are safe,
aren’t we?

Cross-Site Request Forgery (CSRF)

As you can guess, it's not so easy

It is better to use POST instead of GET, but it
doesn’t protect, because one can embed the
following code (e.g. into iframe):

<div style="display:none">

<form action="http://app.com/delete"
method="POST">

<input type="hidden" name="id" value=
"1"></form></div>
<script>document.forms[o].submit()</script>

Cross-Site Request Forgery (CSRF)

How to protect?

Require a confirmation page before executing a potentially
dangerous action

Require a reauthentication

E.g. in allegro.pl you have to authenticate again before doing sth
sensitive

Use POST instead of GET although it doesn’t mitigate fully

Add token to a form
Yahoo calls it crumb

Crumb

Should be unique per user
Best approach: should be changed with every request

Remember, if there is XSS hole, crumb can be stolen!

Cross-Site Request Forgery (CSRF)

POST vs. GET
GET

One can achieve better user experience
The amount of data is limited to ca. 2KB
On the other hand, all information are shown explicitly in the URL

Don’t use if any sensitive information is sent
e.g. user/password, session ID, ...

All requests are stored in logs
...and in a browser’s history

POST

Use when sensitive data is sent
Use when large amount of data should be sent
Helps prevent duplicate submission

Attacks are harder due to the fact that malicious script can’t be injected directly
but they are not impossible!

Most of search engines don’t crawl POST forms
Prevents unintentional actions

References

https://www.owasp.org/index.php/Top 10 2013-A8-Cross-Site Request Forgery (CSRF)

https://www.owasp.org/index.php/Top_10_2013-A8-Cross-Site_Request_Forgery_(CSRF)

OWASP TOP 10

A1: Injection

A2: Broken Authentication and Session Management
A3: Cross-Site Scripting (XSS)

Ay: Insecure Direct Object References

As: Security Misconfiguration

Ab6: Sensitive Data Exposure

A7: Missing Function Level Access Control

A8: Cross-Site Request Forgery (CSRF)

Ag: Using Components with Known Vulnerabilities
A1o: Unvalidated Redirects and Forwards

Using Components with Known

Vulnerabilities

From OWASP

Components, such as libraries, frameworks, and other software
modules, almost always run with full privileges. If a vulnerable
component is exploited, such an attack can facilitate serious data loss
or server takeover. Applications using components with known
vulnerabilities may undermine application defenses and enable a

range of possible attacks and impacts.
Threat Agents Attack Vectors Security Weakness Technical Impacts Business Impacts

i Srerhe Exploitability Detectahbility Impact Application f Business
AVERAGE DIFFICULT MODERATE Specific

Some vulnerable Attacker identifies a Wirtually every application has these issues The full range of Consider what each
components (e.g weak component through |because most development teams don't focus on Jweaknesses is possible, Jwlnerability might mean
framewark libraries) can |scanning or manual ensuring their components/libraries are up to date. Jincluding injection for the business
be identified and analysis. He customizes fln many cases, the developers don't even know all |broken access control controlled by the affected
exploited with automated Jthe exploit as needed the components they are using, never mind their |55, etc. The impact application. It could be
tools, expanding the and executes the attack. fversions. Compaonent dependencies make things could range from minimal ftrivial or it could mean
threat agent pool beyond It gets more difficult if the even worse to complete host complete compromise
targeted attackers to used component is deep takeover and data
include chaotic actors in the application COMpromise

Using Components with Known

Vulnerabilities

From Aspect Security report

Our analysis revealed several interesting findings, including:

]

]

29.8 million (26%) of library downloads have known vulnerabilities

The most downloaded vulnerable libraries were GWT, Xerces, Spring MVC, and Struts 1.x
Security libraries are slightly more likely to have a known vulnerability than frameworks
Based on typical vulnerability rates, the vast majority of library flaws remain undiscovered
Neither presence nor absence of historical vulnerabilities is a useful security indicator

Typical Java applications are likely to include at least one vulnerable library

Zrédto: https://www.aspectsecurity.com/uploads/downloads/2012/03/Aspect-Security-The-Unfortunate-Reality-of-Insecure-Libraries. pdf

Using Components with Known

Vulnerabilities

How to protect?
Monitor security of components used in solution
e.g. in forums, security press

Establish policy related to component choice

e.g. required vendor to implement ISO certification,
ITIL, SDLC practices, passing security tests,...

Keep versions updated
Use software from trusted vendors, if possible

Implemented scanning tools to detect
components with vulnerabilities

Using Components with Known

Vulnerabilities

https://www.owasp.org/index.php/Top 10 2013-Ag-Using Components with Known Vulnerabilities
https://www.aspectsecurity.com/uploads/downloads/2012/03/Aspect-Security-The-Unfortunate-Reality-of-Insecure-

Libraries.pdf

https://www.owasp.org/index.php/Top_10_2013-A9-Using_Components_with_Known_Vulnerabilities
https://www.aspectsecurity.com/uploads/downloads/2012/03/Aspect-Security-The-Unfortunate-Reality-of-Insecure-Libraries.pdf

OWASP TOP 10

A1: Injection

A2: Broken Authentication and Session Management
A3: Cross-Site Scripting (XSS)

Ay: Insecure Direct Object References

As: Security Misconfiguration

Ab6: Sensitive Data Exposure

A7: Missing Function Level Access Control

A8: Cross-Site Request Forgery (CSRF)

Ag: Using Components with Known Vulnerabilities
A1o: Unvalidated Redirects and Forwards

Unvalidated Redirects and

Forwards

From OWASP

Web applications frequently redirect and forward users to other pages
and websites, and use untrusted data to determine the destination
pages. Without proper validation, attackers can redirect victims to
phishing or malware sites, or use forwards to access unauthorized

pages.

Threat Agents

Application Specific

Attack Vectors

Exploitability
AVERAGE

Security Weakness

Prevalence
UNCOMMOM

Consider anyone who
can trick your users into
submitting a reguest to
your website. Any
website ar other HTIML
feed that your users use
could do this

Attacker links to
unvalidated redirect and
tricks victims into
clicking it. Victims are
maore likely to click on it
since the link is to a valid
site. Attacker targets
unsafe forward to bypass
security checks

Impact
MODERATE

Technical Impacts

Business Impacts

Application / Business
Specific

Applications frequenthy redirect users to other
pages, or use internal forwards in a similar manner
Sometimes the target page is specified in an
unvalidated parameter, allowing attackers to choose
the destination page

Detecting unchecked redirects is easy. Look for
redirects where you can set the full URL
Unchecked forwards are harder, because they
target internal pages

Such redirects may
attempt to install
malware or trick victims
into disclosing
passwords or other
sensitive information
Linsafe forwards may
allow access control
bypass

Consider the business
value of retaining your
users' trust

What if they get owned
by malware?
VWhat if attackers can

access internal only
functions

Unvalidated Redirects and

Forwards

A very good example is here:

http://www.asp.net/mvc/tutorials/security/preven
ting-open-redirection-attacks

Let’s take a quick look
How to protect?

Use good libraries and frameworks
Perform again a verification of user input

Create a whitelist of allowed redirections
Or create a strict verification

http://www.asp.net/mvc/tutorials/security/preventing-open-redirection-attacks

References

http://www.asp.net/mvc/tutorials/security/preventing-open-redirection-attacks
http://www.asp.net/mvc/tutorials/security/preventing-open-redirection-attacks
http://stackoverflow.com/questions/13146032/redirect-to-requested-page-after-authentication

http://www.asp.net/mvc/tutorials/security/preventing-open-redirection-attacks
http://www.asp.net/mvc/tutorials/security/preventing-open-redirection-attacks
http://stackoverflow.com/questions/13146032/redirect-to-requested-page-after-authentication

General References

OWASP Top 10

http://www.slideshare.net/xplodersuv/EducauseAnnualWebAppSecTutorialV3

http://www.slideshare.net/MaureenR/owasp-top-ten-in-practice

http://www.slideshare.net/tmd8oo/owasp-top-102013-25184337

http://www.slideshare.net/xplodersuv/EducauseAnnualWebAppSecTutorialV3
http://www.slideshare.net/MaureenR/owasp-top-ten-in-practice
http://www.slideshare.net/tmd800/owasp-top-102013-25184337

