
Paweł Rajba
pawel@cs.uni.wroc.pl
http://itcourses.eu/

mailto:pawel.rajba@gmail.com
http://kursy24.eu/

 Introduction
 Security Risk
 OWASP Top 10

 75% of attacks happen in the Application Layer
(Gartner)

 Perfectly secure environment can be
compromised by a security hole in a web
application

 There are numerous more difficult instructions
allowing to hack a technology or a product

 Reputation is priceless (usuallly)
 Enterprises should assume that legal liability for

poor security practices is on the horizon, and act
accordingly
(Gartner recommendation)

 Elements of the web application environment
 A Web server with an application
 A Network infrastructure where the web server is placed

(with all servers, firewalls, WAFs, IDSs, IPSs, …)
 A Web browser
 A Communication channel (most common: HTTP &

HTTPS)
 Everything outside the network infrastructure can be

tampered by bad guys
 My favourite Fiddler and breakpoints rules (F11 key)
 Specialized tools instead of browsers
 Scanners

Źródło: http://en.wikipedia.org/wiki/Application_security

http://en.wikipedia.org/wiki/Application_security

 Attack vector

 A path or way in which a hacker can access computer
system and exploit/reach a vulnerability

 It can be one vulnerability with several attack vectors

▪ More: http://searchsecurity.techtarget.com/definition/attack-vector

 Weakness Prevalence

 How much a weakness is spread around

 Weakness detectability

 Is it easy to find the weakness in an application?

 Technical and business impact

http://searchsecurity.techtarget.com/definition/attack-vector

 Possible path: can be easy, can be difficult

Źródło: https://www.owasp.org/index.php/Top_10_2013-Risk

https://www.owasp.org/index.php/Top_10_2013-Risk

 Every risk is assessed according to the following schema:

 The risk calculated as follows (an example):

Źródła: https://www.owasp.org/index.php/Top_10_2013-Risk | https://www.owasp.org/index.php/Top_10_2013-Note_About_Risks

https://www.owasp.org/index.php/Top_10_2013-Risk
https://www.owasp.org/index.php/Top_10_2013-Note_About_Risks

 A project from OWASP
 OWASP =

The Open Web Application Security Project
 OWASP TOP 10 is a list of the 10 Most Critical

Web Application Security Risks
 Refreshed every 3rd year
 Last version is from 2013
 A direct link:

 https://www.owasp.org/index.php/Top_10_2013-Top_10

https://www.owasp.org/index.php/Top_10_2013-Top_10

 A1: Injection

 A2: Broken Authentication and Session Management

 A3: Cross-Site Scripting (XSS)

 A4: Insecure Direct Object References

 A5: Security Misconfiguration

 A6: Sensitive Data Exposure

 A7: Missing Function Level Access Control

 A8: Cross-Site Request Forgery (CSRF)

 A9: Using Components with Known Vulnerabilities

 A10: Unvalidated Redirects and Forwards

 From OWASP:
 Injection flaws, such as SQL, OS, and LDAP injection occur

when untrusted data is sent to an interpreter as part of a
command or query. The attacker’s hostile data can trick
the interpreter into executing unintended commands or
accessing data without proper authorization.

 Most popular: SQL injection
 Keep in mind that there are other ones:
 LDAP injections

 XPATH injections

 Command injections

 DOM injections

 JSON injections

 LOG spoofing

 …

 But we will focus on SQL injections

 Occurs in the database layer of an application
 Simple sample

 QUERY: "SELECT * FROM [Users] WHERE
UserName ='"+Request["User"]+"' AND
Password='"+Request["Pwd"]+"'"

 Malicious UserName inputs:
▪ ' OR 1=1; --
▪ ';DROP TABLE [Users]; SELECT '1'

 Threats
 Leak of information (at best)
 Create, update or delete data
 Grant access to hacker
 Take over the OS

 A slightly dangerous attacks
 Creating Windows account

▪ SELECT * FROM [Users] WHERE UserName =''; exec
master..xp_cmdshell 'net users username password /add'; --
' AND Password=''

 Adding this account to the Administrators group
▪ SELECT * FROM [Users] WHERE UserName =''; exec

master..xp_cmdshell 'net localgroup Administrators username
/add'; --
' AND Password=''

 Be carefull with stored procedure
 Putting simply SQL code into stored procedure doesn’t

make it secure
▪ …but can increase a security level

 Blind SQL injection
 Occurs when application is vulnerable, but the results are

not visible to the attacker
▪ e.g. page doesn’t display correctly, or some different content

appears

 It’s a time-consuming type of attack
 Sample scenario of such attack

▪ Try to check if the site is vulnerable
http://www.somesite.com/id=22 and 1=2
▪ If something changed, e.g. an image or anything else is missing, we can

continue

▪ Check no. of returned columns
http://www.somesite.com/id=22 order by n
where instead of n you put 1,2,3,…

▪ Check a vulnerable column
http://www.somesite.com/id=-1 union select 1,2,version(),4,5

▪ … and continue guessing until you shoot something interesting

 How to protect?
 Definitely use a parametrized statement:

SELECT * FROM [Users] WHERE UserName = ? AND
PASSWORD = ?
▪ Then sp_executesql is used (in case SQLServer)
▪ But some parts are not parametrized then you must be careful

 Escape all potential risk fragments (e.g. – ; ' " \ etc.)
 Validate input

▪ Strong typing
▪ e.g. id is an int – check whether it is really int

▪ Business logic
▪ e.g if an account no. is expected, check precisely if it’s the account no.

 Using stored procedures don’t mitigate risk, but can reduce it
▪ By e.g. typed parameters

 Use the least privileges principle, i.e. run a query in a context of
a user with least privileges needed to perform a specified action

 SQL Injection
 http://www.unixwiz.net/techtips/sql-injection.html

 http://ferruh.mavituna.com/sql-injection-cheatsheet-oku/

 http://weblogs.sqlteam.com/mladenp/archive/2011/02/16/sql-server-sql-injection-from-start-to-end.aspx

 http://www.securiteam.com/securityreviews/5DP0N1P76E.html

 http://blogs.msdn.com/b/raulga/archive/2007/01/04/dynamic-sql-sql-injection.aspx

 http://www.securiteam.com/securityreviews/5DP0N1P76E.html

 http://download.oracle.com/oll/tutorials/SQLInjection/index.htm

 http://www.sommarskog.se/dynamic_sql.html

 http://msdn.microsoft.com/en-us/library/cc716760.aspx

 Blind SQL Injection sample scenarios
 https://www.owasp.org/index.php/Blind_SQL_Injection

 http://www.breakthesecurity.com/2010/12/hacking-website-using-sql-injection.html

 http://forum.intern0t.org/web-hacking-war-games/818-blind-sql-injection.html

http://www.unixwiz.net/techtips/sql-injection.html
http://ferruh.mavituna.com/sql-injection-cheatsheet-oku/
http://weblogs.sqlteam.com/mladenp/archive/2011/02/16/sql-server-sql-injection-from-start-to-end.aspx
http://www.securiteam.com/securityreviews/5DP0N1P76E.html
http://blogs.msdn.com/b/raulga/archive/2007/01/04/dynamic-sql-sql-injection.aspx
http://www.securiteam.com/securityreviews/5DP0N1P76E.html
http://download.oracle.com/oll/tutorials/SQLInjection/index.htm
http://www.sommarskog.se/dynamic_sql.html
http://msdn.microsoft.com/en-us/library/cc716760.aspx
http://www.breakthesecurity.com/2010/12/hacking-website-using-sql-injection.html
http://www.breakthesecurity.com/2010/12/hacking-website-using-sql-injection.html
http://forum.intern0t.org/web-hacking-war-games/818-blind-sql-injection.html

 Quick review
 https://www.owasp.org/index.php/XPATH_Injection

 https://www.owasp.org/index.php/LDAP_injection

https://www.owasp.org/index.php/XPATH_Injection
https://www.owasp.org/index.php/LDAP_injection

 A1: Injection

 A2: Broken Authentication and Session Management

 A3: Cross-Site Scripting (XSS)

 A4: Insecure Direct Object References

 A5: Security Misconfiguration

 A6: Sensitive Data Exposure

 A7: Missing Function Level Access Control

 A8: Cross-Site Request Forgery (CSRF)

 A9: Using Components with Known Vulnerabilities

 A10: Unvalidated Redirects and Forwards

 From OWASP:
 Application functions related to authentication and

session management are often not implemented
correctly, allowing attackers to compromise passwords,
keys, or session tokens, or to exploit other implementation
flaws to assume other users’ identities.

 Where are the threats?
 User credentials aren’t protected enough and can be stolen

▪ e.g. SQL Injection, guessing or just brute force attack, keyloggers

 Credentials can be guessed or overwritten through weak
account management functions
▪ e.g., account creation, change password, recover password

 Session IDs
▪ are exposed in the URL (e.g., URL rewriting).
▪ are vulnerable to session fixation attacks.
▪ don’t timeout, or user sessions or authentication tokens, particularly

single sign-on (SSO) tokens, aren’t properly invalidated during logout.
▪ aren’t rotated after successful login.

 Passwords, session IDs, and other credentials are sent over
unencrypted connections (man-in-the-middle attack)

Źródło: https://www.owasp.org/index.php/Top_10_2013-A2-Broken_Authentication_and_Session_Management

https://www.owasp.org/index.php/Top_10_2013-A2-Broken_Authentication_and_Session_Management

 How to protect ourselves?
 Credentials should be stored using hashing or encryption

▪ Also credentials to databases
▪ Consider using „slow” function (e.g. PBKDF2) – prevents brute force
▪ Mandatory using salt in hashes – prevent rainbow tables attack

 Credentials shouldn’t be easy to guess or overwrite
▪ Some policies should be applied
▪ Brute force (e.g. weak passwords)

 Be carefull with password recovery – some approaches can be risky
 TLS should be used to send sensitive information (including credentials and session IDs)

▪ Ensure certificate is valid

 Consider different approach than user/password
▪ PKI, Fingerprint
▪ Digipass, one-time codes
▪ Masked password (a little bit controversial)
▪ Multi-factor authentication

 Session management should be done carefully
▪ Not in URL,rotation of session’s Ids, using good timeouts and proper logout

 Sometimes it’s difficult to protect
 e.g. keyloggers, but a display keyboard can be solution…

… O RLY? Who will use it??

 Session fixation

Źródło: https://www.owasp.org/index.php/Session_fixation

https://www.owasp.org/index.php/Session_fixation

 Session fixation

 Other similar possibilities

▪ XSS on client side
▪ http://website.kom/<script>document.cookie=”sessionid=abcd”;</script>

▪ XSS on DOM
▪ http://website.kon/<meta http-equiv=Set-Cookie content=”sessionid=abcd”>

▪ Insert HTTP header

Źródło: https://www.owasp.org/index.php/Session_fixation

http://website.kom/<script>document.cookie=”sessionid=abcd”;</script
https://www.owasp.org/index.php/Session_fixation

 Session fixation
 https://www.owasp.org/index.php/Session_fixation

 http://en.wikipedia.org/wiki/Session_fixation

 https://www.owasp.org/index.php/Session_Management_Cheat_Sheet

 http://software-security.sans.org/blog/2009/06/14/session-attacks-and-aspnet-part-1/

 http://software-security.sans.org/blog/2009/06/24/session-attacks-and-aspnet-part-2

https://www.owasp.org/index.php/Session_fixation
http://en.wikipedia.org/wiki/Session_fixation
https://www.owasp.org/index.php/Session_Management_Cheat_Sheet
http://software-security.sans.org/blog/2009/06/14/session-attacks-and-aspnet-part-1/
http://software-security.sans.org/blog/2009/06/24/session-attacks-and-aspnet-part-2

 A1: Injection

 A2: Broken Authentication and Session Management

 A3: Cross-Site Scripting (XSS)

 A4: Insecure Direct Object References

 A5: Security Misconfiguration

 A6: Sensitive Data Exposure

 A7: Missing Function Level Access Control

 A8: Cross-Site Request Forgery (CSRF)

 A9: Using Components with Known Vulnerabilities

 A10: Unvalidated Redirects and Forwards

 From OWASP
 XSS flaws occur whenever an application takes untrusted data and

sends it to a web browser without proper validation or escaping. XSS
allows attackers to execute scripts in the victim’s browser which can
hijack user sessions, deface web sites, or redirect the user to malicious
sites.

 Same Origin Policy

 Define a rule where only requests to the same
„site” are allowed

 It’s applied mostly to JavaScript code

 Relaxing SOP

 Cross-origin resource sharing

▪ Let’s review
▪ http://en.wikipedia.org/wiki/Cross-origin_resource_sharing

 JSONP

▪ Let’s review
▪ https://en.wikipedia.org/wiki/JSONP

http://en.wikipedia.org/wiki/Cross-origin_resource_sharing
https://en.wikipedia.org/wiki/JSONP

 XSS stands for cross site scripting
 Attack on a the client side (web browser)

 Force a web browser to execute an unwanted JavaScript
code

 There are 3 main types of attacks
 DOM based XSS (type 0)

▪ The code is executed as a result of dynamic modification of a DOM
by another JavaScript code

 Reflected (type1)
▪ The code is attachted somehow to a link and the user is tricked to

follow this link

 Stored or persistent (type 2)
▪ The code is stored in a database and shown to a user while a web

page is opening

 Classic scenarios

 Someone is tricked to follow a link with malicious
code attached (type 0 and 1)

 Hacker adds a malicious code in a blog comment

▪ Everyone who opens an article, executes malicious code

 What the attacker can do using XSS hole
 Steal your cookies (sometimes they can be really delicious)
 Intercept your login and password
 Generally embed any malware
 XSS is a start point for other attacks (e.g. CSRF)

 How can we protect ourselves?
 Escape everything sent to a browser

▪ Sometimes we want to sent an unescaped stuff – it should be then under full control

 Use frameworks or tools to do it automatically
▪ In this case a good knowledge of the tools is important

 Validate any input provided by an user
▪ Use whitelists instead of blacklists

 Use httpOnly
 XSS regarding the ASP.NET

▪ http://msdn.microsoft.com/en-us/library/ff649310.aspx

 Other good resources:
▪ https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
▪ https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet

http://msdn.microsoft.com/en-us/library/ff649310.aspx
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet

 But how information can be stolen?

 Requests are limited by the same origin policy and
alerts don’t look dangerous…

 … but we can use img and iframe tags

 … and there are many other techniques

 Surprising how many big companies has been
xssed

 Nice web site: http://xssed.com/

http://xssed.com/

 XSS
 https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet

 https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet

 http://projects.webappsec.org/w/page/13246920/Cross%20Site%20Scripting

 http://excess-xss.com/

 http://www.webappsec.org/projects/articles/071105.shtml

 https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet

 https://www.acunetix.com/websitesecurity/xss/

 http://www.isaca.org/chapters5/Venice/Events/Documents/ISACAVENICE-OWASP-UNIVE-2013-1%20-%20DiPaola.pdf

 http://www.thegeekstuff.com/2012/02/xss-attack-examples/

 https://addons.mozilla.org/en-US/firefox/addon/xss-me/

 Browser Security Handbook
 https://code.google.com/p/browsersec/wiki/Main

http://excess-xss.com/
http://excess-xss.com/
http://excess-xss.com/
http://excess-xss.com/
http://www.webappsec.org/projects/articles/071105.shtml
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet
https://www.acunetix.com/websitesecurity/xss/
http://www.isaca.org/chapters5/Venice/Events/Documents/ISACAVENICE-OWASP-UNIVE-2013-1 - DiPaola.pdf
http://www.thegeekstuff.com/2012/02/xss-attack-examples/
https://addons.mozilla.org/en-US/firefox/addon/xss-me/
https://code.google.com/p/browsersec/wiki/Main

 A1: Injection

 A2: Broken Authentication and Session Management

 A3: Cross-Site Scripting (XSS)

 A4: Insecure Direct Object References

 A5: Security Misconfiguration

 A6: Sensitive Data Exposure

 A7: Missing Function Level Access Control

 A8: Cross-Site Request Forgery (CSRF)

 A9: Using Components with Known Vulnerabilities

 A10: Unvalidated Redirects and Forwards

 From OWASP
 A direct object reference occurs when a developer exposes a reference

to an internal implementation object, such as a file, directory, or
database key. Without an access control check or other protection,
attackers can manipulate these references to access unauthorized
data.

 Occurs when one can get access to an object which
shouldn’t be available to the user
 e.g. http://site.com/accountInfo?accno=not_my_account_no

 In order to perform this attack, a family of web parameter
tampering techniques can be used
 Query string tampering
 Form’s hidden field tampering
 Cookie tampering

 Some general guidelines
 Check if all resources are protected well enough and if there is

always an authorization when needed
 Usually automatic tests are not sufficient because they can’t

recognize if sth should be available to the user or not
 So, security code review is the better approach

 Query string tampering
 Simple sample

▪ Link
http://host/product/1332/view
can be replaced by
http://host/product/1335/view

▪ Next, attacker can try
http://host/product/1332/delete

 Mitigations
▪ Nothing – just perform a proper authorization on the server side
▪ Use POST instead of GET
▪ Protect link from change

▪ Encrypting the link
▪ Singing the link by attaching some salted hashcode

 Usability can be poor
 One cannot send link to a friend
 Not SEO friendly

http://host/product/1332/view
http://host/product/1335/view
http://host/product/1332/delete

 Form’s hidden fields tampering
 Simple sample

<input type="hidden " id= "12345” name= "balance" value=
"1200" />

 Mitigations
▪ Rebuild the app and don’t store such information on client side
▪ Use encryption

▪ It’s safe
▪ Doesn’t decrease user experience

 Cookie tampering
 Analogous as in the point above
 There are 3 main problems:

▪ Cookie Theft
▪ Cookie Poisoning
▪ Cross Site Cooking

 https://www.owasp.org/index.php/Top_10_2013-A4-Insecure_Direct_Object_References
 http://www.cisodesk.com/web-application-security/threats-mitigation/insecure-direct-object-references/
 http://cwe.mitre.org/data/definitions/22.html

https://www.owasp.org/index.php/Top_10_2013-A4-Insecure_Direct_Object_References
http://www.cisodesk.com/web-application-security/threats-mitigation/insecure-direct-object-references/
http://cwe.mitre.org/data/definitions/22.html

 A1: Injection

 A2: Broken Authentication and Session Management

 A3: Cross-Site Scripting (XSS)

 A4: Insecure Direct Object References

 A5: Security Misconfiguration

 A6: Sensitive Data Exposure

 A7: Missing Function Level Access Control

 A8: Cross-Site Request Forgery (CSRF)

 A9: Using Components with Known Vulnerabilities

 A10: Unvalidated Redirects and Forwards

 From OWASP
 Good security requires having a secure configuration defined and

deployed for the application, frameworks, application server, web
server, database server, and platform. Secure settings should be
defined, implemented, and maintained, as defaults are often
insecure. Additionally, software should be kept up to date.

 Occurs when vulnerability is available through the
configuration
 e.g. default settings, default accounts, old versions

 It’s related to information leakage and improper error
handling

 Google can index details about DB
 e.g. full connection string with password

 Anything you say can and will be used against you
 Case study:

▪ GET http://pawel.ii.uni.wroc.pl/ HTTP/1.1
Host: pawel.ii.uni.wroc.pl

▪ HTTP/1.1 200 OK
Date: Sun, 05 Mar 2017 08:58:31 GMT
Server: Apache/2.2.21 (Unix) mod_wsgi/3.3 Python/2.4.4 mod_ssl/2.2.21
OpenSSL/0.9.8k PHP/5.2.9
X-Powered-By: PHP/5.2.9
Content-Length: 803
Content-Type: text/html

<!DOCTYPE (...)

 How to protect, part 1

 Don’t expose information about your system

▪ Especially turn off directory browsing

 Remove passwords from the source code

 Delete unused user accounts and pages

 Turn off unused services

 Messages from database or application should be as
minimal as possible

▪ Notice that these information can be indexed by Google!

▪ Also can be stored in logs

 How to protect, part 2
 By default, many systems have a bad configuration, e.g.

▪ Access logs are available to public

▪ Directory listing is enabled

 Be careful with robots.txt – first file used by hackers,
sometimes it’s better to use access control

 Be up-to-date with patches

 Assume internal attacks
▪ Although web.config isn’t available to browsers, it can be read by

employees

 Perform a network penetration test (or other tests) and
harden a server

 https://www.owasp.org/index.php/Top_10_2013-A5-Security_Misconfiguration
 http://cwe.mitre.org/data/definitions/2.html
 http://msdn.microsoft.com/en-us/library/dtkwfdky.aspx

https://www.owasp.org/index.php/Top_10_2013-A5-Security_Misconfiguration
http://cwe.mitre.org/data/definitions/2.html
http://msdn.microsoft.com/en-us/library/dtkwfdky.aspx

 A1: Injection

 A2: Broken Authentication and Session Management

 A3: Cross-Site Scripting (XSS)

 A4: Insecure Direct Object References

 A5: Security Misconfiguration

 A6: Sensitive Data Exposure

 A7: Missing Function Level Access Control

 A8: Cross-Site Request Forgery (CSRF)

 A9: Using Components with Known Vulnerabilities

 A10: Unvalidated Redirects and Forwards

 From OWASP:
 Many web applications do not properly protect sensitive data, such as

credit cards, tax IDs, and authentication credentials. Attackers may
steal or modify such weakly protected data to conduct credit card
fraud, identity theft, or other crimes. Sensitive data deserves extra
protection such as encryption at rest or in transit, as well as special
precautions when exchanged with the browser.

 There are two main steps to mitigate a risk:
 Make an information classification
 Apply appropriate level of protection for every class of

information
 Ways for gathering information
 Exploring the network
 Stealing computers and media
 Breaking into computers and stealing the data

▪ Also using stolen passwords

 Eavesdroping and phishing network and emails
 Social engineering

 How to protect? (part 1 – storage)
 Appropriate strong encryption mechanisms are used

▪ Use AES, Blowfish, 3DES

▪ Use SHA-256, 512 instead of MD5

▪ E.g. salted hashes vs. not salted hashes (3000 years vs. 4
weeks)

 Decryption is available to the authorized users only

 There are appropriate procedures
▪ E.g. a decryption key should be stored in a different place

than an encrypted data

 Again, encrypt the web.config

 How to protect? (part 2 – communication)
 Of course the TLS should be turned on, but it is important to

ensure that a TLS is needed (because it costs)
 If the TLS is used, all resources should be requested using TLS
 The TLS certificate has to be valid
 In some cases some local certificate authority could be

maintained with the whole environment configuration
▪ e.g. appropriate certificates should be added to each station

 And finally there is not only traffic between the browser and the
web server, but about securing end-2-end information flows
▪ Transport vs. storage
▪ All other components like SQL servers, Web Services
▪ … and many others

 https://www.owasp.org/index.php/Top_10_2013-A6-Sensitive_Data_Exposure

https://www.owasp.org/index.php/Top_10_2013-A6-Sensitive_Data_Exposure

 A1: Injection

 A2: Broken Authentication and Session Management

 A3: Cross-Site Scripting (XSS)

 A4: Insecure Direct Object References

 A5: Security Misconfiguration

 A6: Sensitive Data Exposure

 A7: Missing Function Level Access Control

 A8: Cross-Site Request Forgery (CSRF)

 A9: Using Components with Known Vulnerabilities

 A10: Unvalidated Redirects and Forwards

 From OWASP
 Most web applications verify function level access rights before

making that functionality visible in the UI. However, applications need
to perform the same access control checks on the server when each
function is accessed. If requests are not verified, attackers will be able
to forge requests in order to access functionality without proper
authorization.

 We can consider 3 main areas:
 As stated in OWASP desc., access control only in UI, but

not repeated in server layer
 Privileges elevation: one accessed a system as a common

user, but is able to perform admin oper.
 Don’t forget about files like PDF, DOC, etc.

 It is important to create good security architecture
with e.g.
 RBAC (role based access control),
 SRP (single responsibility principle),
 LPP (least privileges principle)

 It is similar to A4, but here it is about „functions”
protection while A4 is about references to objects

 https://www.owasp.org/index.php/Top_10_2013-A7-Missing_Function_Level_Access_Control
 https://www.owasp.org/index.php/Guide_to_Authorization
 http://lists.owasp.org/pipermail/owasp-topten/2010-August/000694.html

https://www.owasp.org/index.php/Top_10_2013-A7-Missing_Function_Level_Access_Control
https://www.owasp.org/index.php/Guide_to_Authorization
http://lists.owasp.org/pipermail/owasp-topten/2010-August/000694.html

 A1: Injection

 A2: Broken Authentication and Session Management

 A3: Cross-Site Scripting (XSS)

 A4: Insecure Direct Object References

 A5: Security Misconfiguration

 A6: Sensitive Data Exposure

 A7: Missing Function Level Access Control

 A8: Cross-Site Request Forgery (CSRF)

 A9: Using Components with Known Vulnerabilities

 A10: Unvalidated Redirects and Forwards

 From OWASP
 A CSRF attack forces a logged-on victim’s browser to send a forged

HTTP request, including the victim’s session cookie and any other
automatically included authentication information, to a vulnerable
web application. This allows the attacker to force the victim’s browser
to generate requests the vulnerable application thinks are legitimate
requests from the victim.

 CSRF or XSRF: cross site request forgery
 It’s an attack on the server side of the web

application
 Let’s see a sample scenario..

 Let’s see sample scenario
 There is a bank called: The Bank

▪ URL: http://www.bank.com/

 This bank has a site to transfer money:
▪ http://www.bank.com/transfer?toaccount=123&amount=1000

 Alice logged into The Bank site
 Then Eve sent to Alice an email with the following link:

▪ Very happy rabbit with big
eggs

▪ As you can guess, http://bit.ly/veryfunny
resolves to
http://www.bank.com/transfer?toaccount=123&amount=1000

 Alice wants to big eggs and clicks the link
 … and due to the fact that Alice is still logged into The Bank

site, Eve becomes richer

http://www.bank.com/
http://www.bank.com/transfer?toaccount=123&amount=1000
http://bit.ly/veryfunny
http://www.bank.com/transfer?toaccount=123&amount=1000

 In general: attack occurs when a user
unknowingly perform an action

 Important remark: user has to be authorized

 Sometimes very difficult to track

 Everything is performed in the context of
authorized user, action and IP, everything is correct,
oh, beside that user doesn’t know anything

 Usually combined with the XSS attack

 How to force the user to perform what the
attacker wants?
 Send him a link with a request which performs

what the attacker wants
▪ Very
funny

 Using a XSS embed a malicious code on some
pages (e.g. a forum or anything else)
▪ <img src="http://bank/transfer/no=123&amount=1000"

alt="Very funny"/>

 So, if we force to use POST we are safe,
aren’t we?

 As you can guess, it’s not so easy

 It is better to use POST instead of GET, but it
doesn’t protect, because one can embed the
following code (e.g. into iframe):

▪ <div style="display:none">
<form action="http://app.com/delete"
method="POST">
<input type="hidden" name= "id" value=
"1"></form></div>
<script>document.forms[0].submit()</script>

 How to protect?
 Require a confirmation page before executing a potentially

dangerous action
 Require a reauthentication

▪ E.g. in allegro.pl you have to authenticate again before doing sth
sensitive

 Use POST instead of GET although it doesn’t mitigate fully
 Add token to a form

▪ Yahoo calls it crumb

 Crumb
 Should be unique per user

▪ Best approach: should be changed with every request

 Remember, if there is XSS hole, crumb can be stolen!

 POST vs. GET
 GET

▪ One can achieve better user experience
▪ The amount of data is limited to ca. 2KB
▪ On the other hand, all information are shown explicitly in the URL
▪ Don’t use if any sensitive information is sent

▪ e.g. user/password, session ID, …

▪ All requests are stored in logs
▪ … and in a browser’s history

 POST
▪ Use when sensitive data is sent
▪ Use when large amount of data should be sent
▪ Helps prevent duplicate submission
▪ Attacks are harder due to the fact that malicious script can’t be injected directly

▪ but they are not impossible!

▪ Most of search engines don’t crawl POST forms
▪ Prevents unintentional actions

 https://www.owasp.org/index.php/Top_10_2013-A8-Cross-Site_Request_Forgery_(CSRF)

https://www.owasp.org/index.php/Top_10_2013-A8-Cross-Site_Request_Forgery_(CSRF)

 A1: Injection

 A2: Broken Authentication and Session Management

 A3: Cross-Site Scripting (XSS)

 A4: Insecure Direct Object References

 A5: Security Misconfiguration

 A6: Sensitive Data Exposure

 A7: Missing Function Level Access Control

 A8: Cross-Site Request Forgery (CSRF)

 A9: Using Components with Known Vulnerabilities

 A10: Unvalidated Redirects and Forwards

 From OWASP
 Components, such as libraries, frameworks, and other software

modules, almost always run with full privileges. If a vulnerable
component is exploited, such an attack can facilitate serious data loss
or server takeover. Applications using components with known
vulnerabilities may undermine application defenses and enable a
range of possible attacks and impacts.

 From Aspect Security report

Źródło: https://www.aspectsecurity.com/uploads/downloads/2012/03/Aspect-Security-The-Unfortunate-Reality-of-Insecure-Libraries.pdf

 How to protect?
 Monitor security of components used in solution
▪ e.g. in forums, security press

 Establish policy related to component choice
▪ e.g. required vendor to implement ISO certification,

ITIL, SDLC practices, passing security tests,…

 Keep versions updated

 Use software from trusted vendors, if possible

 Implemented scanning tools to detect
components with vulnerabilities

 https://www.owasp.org/index.php/Top_10_2013-A9-Using_Components_with_Known_Vulnerabilities
 https://www.aspectsecurity.com/uploads/downloads/2012/03/Aspect-Security-The-Unfortunate-Reality-of-Insecure-

Libraries.pdf

https://www.owasp.org/index.php/Top_10_2013-A9-Using_Components_with_Known_Vulnerabilities
https://www.aspectsecurity.com/uploads/downloads/2012/03/Aspect-Security-The-Unfortunate-Reality-of-Insecure-Libraries.pdf

 A1: Injection

 A2: Broken Authentication and Session Management

 A3: Cross-Site Scripting (XSS)

 A4: Insecure Direct Object References

 A5: Security Misconfiguration

 A6: Sensitive Data Exposure

 A7: Missing Function Level Access Control

 A8: Cross-Site Request Forgery (CSRF)

 A9: Using Components with Known Vulnerabilities

 A10: Unvalidated Redirects and Forwards

 From OWASP
 Web applications frequently redirect and forward users to other pages

and websites, and use untrusted data to determine the destination
pages. Without proper validation, attackers can redirect victims to
phishing or malware sites, or use forwards to access unauthorized
pages.

 A very good example is here:

 http://www.asp.net/mvc/tutorials/security/preven
ting-open-redirection-attacks

▪ Let’s take a quick look

 How to protect?

 Use good libraries and frameworks

 Perform again a verification of user input

 Create a whitelist of allowed redirections

▪ Or create a strict verification

http://www.asp.net/mvc/tutorials/security/preventing-open-redirection-attacks

 http://www.asp.net/mvc/tutorials/security/preventing-open-redirection-attacks
 http://www.asp.net/mvc/tutorials/security/preventing-open-redirection-attacks
 http://stackoverflow.com/questions/13146032/redirect-to-requested-page-after-authentication

http://www.asp.net/mvc/tutorials/security/preventing-open-redirection-attacks
http://www.asp.net/mvc/tutorials/security/preventing-open-redirection-attacks
http://stackoverflow.com/questions/13146032/redirect-to-requested-page-after-authentication

 OWASP Top 10
 http://www.slideshare.net/xplodersuv/EducauseAnnualWebAppSecTutorialV3

 http://www.slideshare.net/MaureenR/owasp-top-ten-in-practice

 http://www.slideshare.net/tmd800/owasp-top-102013-25184337

http://www.slideshare.net/xplodersuv/EducauseAnnualWebAppSecTutorialV3
http://www.slideshare.net/MaureenR/owasp-top-ten-in-practice
http://www.slideshare.net/tmd800/owasp-top-102013-25184337

