
Paweł Rajba
pawel@cs.uni.wroc.pl
http://itcourses.eu/

mailto:pawel.rajba@gmail.com
http://kursy24.eu/

 Introduction
 OpenID Connect
 SAML2
 WS-Trust
 WS-Federation

 Federation example:

 Agreement between countries

▪ So one can visit another country

▪ Level of trust defines the rules
▪ Schengen Area vs. North Korea

 Federated Identity: passport

 A federated identity in information
technology is the means of linking a person's
electronic identity and attributes, stored
across multiple distinct identity management
systems.

 Federation
 provides a mechanism where one identity is shared in different

applications/companies
 Is based on trust
 Usually executed by a token-based system

▪ E.g. SAML2, Open ID Connect, WS-Trust, WS-Federation
 Federation vs. SSO

 Federation allows SSO without storing password
▪ Otherwise, client needs to authenticate in every app

 SSO is a subset of Federation
 Central Authentication Service (CAS)

 Protocol for central authN for web applications
 Not the same as SSO

▪ One can log into APP1 and need to log again into APP2 (but centrally)

 No federation is possible

 In other words:

 Federation: identity shared between realms

▪ For instance: using a username in both companies, the
same person is identified (first name, last name, e-mail,
birth date, etc.)

 SSO: user authenticates once for a set of
applications

▪ Can be implemented in different ways, e.g. based on
session ID, token, storing the password, etc.

 A scenario
 1 user (U) with a browser (B)
 2 applications (APP1 and APP2) in different realms

 Federation without SSO:
 U visits APP1 by the B and make an authN
 A session is established between B and APP1
 U visits APP2 by the B and make an authN again

▪ Maybe with different password

 A session is established between B and APP2
 Where is the additional value?

▪ Even if the authN is required twice, the account is available in APP1/2
 Federation with SSO

 The same, but in step 3 authN is not required again
 What about SSO without Federation?

 Credentials stored on the client
 The same usernames are used in APP1 and APP2, but they are not federated

 Basic terminology

 IdP: Identity Provider

▪ Authorization Server in Auth2

 RP: Relying Party

▪ Client in Auth2

 STS: Security Token Service

▪ Authorization Server in Auth2

 Typical use-cases or challenges

 Cross-domain

 Web-based single sign-on

 Cross-domain user account provisioning

 Cross-domain entitlement management

 Cross-domain user attribute exchange.

 Some products supporting federation
 Oracle Identity Federation

 PingFederate Federation Server

 Tivoli Federated Identity Manager (IBM)

 AWS Identity and Access Management (IAM)

 Identity Federation and Remote Access (F5)

 CA Single Sign-On

 Microsoft Azure Access Control Service

 NetIQ Access Manager

 Let’s take a closer look on

 Open ID Connect

 SAML 2.0

 … and a quick look on

 WS-Trust

 WS-Federation

OpenID Connect

 It is quite popular that OAuth2 is abused for
authentication

 The most common scenario is as follows:

 User authenticates on AS

 Afterwards an application exchange code for
access token

 The assumption is that if the application is able to
get data using access token, then it means that
user properly authenticated on AS

 Main problems

 OAuth2 is an authorization framework, there is no
flow related to authentication

▪ Although authentication is a part of the OAuth2 flow

 The focus is on the client application, not on a user

▪ In other words, authorization is for the client application,
not for the user

▪ After getting an access token, user is no more involved

 Main issue with applying OAuth2 for authN

 The goal is to provide a token which allows to get
specific information

▪ As a result there is only an access_token

▪ There is no information about the user

 If another app gets the token, only can obtain the
same data

▪ If used for authentication, app can impersonate the user

▪ There is no additional verification who is the proper
receiver of the token

 An example where OAuth2 is not enough

 Application get e-mails

▪ … but wants to not only show
them, but also .e.g translate
and store in the application

 In this scenario we need
identity, not only accesses

 ID is never sent outside the application

 And we don’t built any auth services locally

https://www.youtube.com/watch?v=BdKmZ7mPNns

https://www.youtube.com/watch?v=BdKmZ7mPNns

 Very good considerations

 OAuth 2.0 and Sign-In
by Vittorio Bertocci

▪ http://www.cloudidentity.com/blog/2013/01/02/oauth-2-
0-and-sign-in-4/

 The problem with OAuth for Authentication
by John Bradley

▪ http://www.thread-safe.com/2012/01/problem-with-
oauth-for-authentication.html

Source: http://nat.sakimura.org/2012/01/20/openid-connect-nutshell/

http://www.cloudidentity.com/blog/2013/01/02/oauth-2-0-and-sign-in-4/
http://www.thread-safe.com/2012/01/problem-with-oauth-for-authentication.html
http://nat.sakimura.org/2012/01/20/openid-connect-nutshell/

 The solution is the OpenID Connect
 An authentication protocol built on top of OAuth2

▪ We can consider OpenID Connect as a OAuth2 profile which defines
a flow for authentication

 Allows to get the information about the user
▪ Adds ID Token where this information is stored

 Emerging protocol, but has many implementations
▪ Google is probably the best one

 The main website:
http://openid.net/connect/

 A very good introduction
▪ http://nat.sakimura.org/2012/01/20/openid-connect-nutshell/

 Let’s see the presentation video
 https://www.youtube.com/watch?v=Kb56GzQ2pSk

▪ We will use the offline mode 

http://openid.net/connect/
http://nat.sakimura.org/2012/01/20/openid-connect-nutshell/
https://www.youtube.com/watch?v=Kb56GzQ2pSk

 To make a request the following information is
required
 Client ID

 Client Secret

 End-user authorization endpoint

 Token endpoint

 User info endpoint
 Additionally:
 grant_type = token id_token

 scope = openid profile email …

 GET

 /authorize?grant_type=token%20id_token&
scope=openid%20proflie&
redirect_uri=https%3A%2F%2Fclient%2Eexample
%2Ecom%2Fcb
HTTP/1.1

 Host: server.example.com

 Beside access_token included in OAuth2 response, one
gets id_token with the following information
 aud (audience)

▪ The client_id that this id_token is intended for.

 exp (expiration)
▪ The time after which this token must not be accepted

 sub (subject)
▪ A locally unique and never reassigned identifier for the user (subject)
▪ E.g. “24400320″ or “AItOawmwtWwcT0k51BayewNvutrJUqsvl6qs7A4″.

 iss (issuer)
▪ A https: URI specifying the fully qualified host name of the issuer, which

when paired with the user_id, creates a globally unique and never
reassigned identifier.

▪ E.g. “https://aol.com”, “https://google.com”, or “https://sakimura.org”.

 nonce - nonce value sent in the request.
 All these parameters are required

 The following rules should be applied
 An authorization server must only issue assertions

about user identifiers within its domain
 The client MUST verify that the aud matches

its client_id and iss matches the domain (including
sub-domain) of the issuer of the client_id

 The authorization server is responsible for managing
its own local namespace and enforcing that
each user_id is locally unique and never reassigned

 When the client stores the user identifier, it MUST
store the tuple of the user_id and iss.
The user_id MUST NOT be over 255 ASCII characters
in length

 Basic Client Profile
 Based on OAuth2 code flow
 Designed for a web-based relying parties
 Subset of OpenId Connect Core specification
 More: http://openid.net/specs/openid-connect-basic-1_0.html

Source: http://www.slideshare.net/metadaddy/openid-connect-an-overview

http://openid.net/specs/openid-connect-basic-1_0.html
http://www.slideshare.net/metadaddy/openid-connect-an-overview

 Implicit Client Profile
 Based on OAuth2 implicit flow
 Designed for a web-based relying parties
 Subset of OpenId Connect Core specification
 More: http://openid.net/specs/openid-connect-implicit-1_0.html

Source: http://www.slideshare.net/metadaddy/openid-connect-an-overview

http://openid.net/specs/openid-connect-implicit-1_0.html
http://www.slideshare.net/metadaddy/openid-connect-an-overview

 Discovery
 Allows client app to

▪ determine the identity of the End-User
▪ Based on authentication performed in Authorization Server

▪ obtain a basic profile a of End-User

 Uses WebFinger (RFC7033)
 More: https://openid.net/specs/openid-connect-

discovery-1_0.html
 Registration
 Allows client app to register on the server
 More: http://openid.net/specs/openid-connect-

registration-1_0.html

https://openid.net/specs/openid-connect-discovery-1_0.html
http://openid.net/specs/openid-connect-registration-1_0.html

 A very good open source provider and a set of
samples
 https://identityserver.github.io/Documentation/

 Getting started videos
 Introduction into the topic

▪ https://vimeo.com/113604459

 Provider introduction
▪ http://vimeo.com/91397084

 Walkthrough samples
▪ http://vimeo.com/91405115

https://identityserver.github.io/Documentation/
https://vimeo.com/113604459
http://vimeo.com/91397084
http://vimeo.com/91405115

SAML2

 Security Assertion Markup Language
 XML based protocol
 OASIS standard

 SAML 1.0: 2002

 SAML 1.1: 2003

 SAML 2.0: 2005

 Flexible and extensible protocol

 Entity (or system entity): An active element
of a computer/network system

 Principal: An entity whose identity can be
authenticated

 Subject: A principal in the context of a
security domain

https://www.oasis-open.org/committees/download.php/12958/SAMLV2.0-basics.pdf

https://www.oasis-open.org/committees/download.php/12958/SAMLV2.0-basics.pdf

 Identity: The essence of an entity, often described by
one's characteristics, traits, and preferences
 Anonymity: Having an identity that is unknown or

concealed
 Identifier: A data object that uniquely refers to a

particular entity
 Pseudonym: A privacy-preserving identifier

 Federated identity: Existence of an agreement
between providers on a set of identifiers and/or
attributes to use to refer to a principal
 Account linkage: Relating a principal's accounts at two

different providers so that they can communicate about
the principal

https://www.oasis-open.org/committees/download.php/12958/SAMLV2.0-basics.pdf

https://www.oasis-open.org/committees/download.php/12958/SAMLV2.0-basics.pdf

 Asserting party (SAML authority): An entity
that produces SAML assertions
 Identity provider: An entity that creates, maintains,

and manages identity information for principals and
provides principal authentication to other service
providers

 Relying party: An entity that decides to take an
action based on information from another
system entity
 Service provider: An entity that provides services to

principals or other entities

https://www.oasis-open.org/committees/download.php/12958/SAMLV2.0-basics.pdf

https://www.oasis-open.org/committees/download.php/12958/SAMLV2.0-basics.pdf

 User

 Subject, principal

 Identity Provider

 Asserting party

 Service Provider

 Relying party

 Identity Federation
 SSO / Single Sign-Out
 Securing Web Services
 Attribute Services

https://www.oasis-open.org/committees/download.php/12958/SAMLV2.0-basics.pdf

https://www.oasis-open.org/committees/download.php/12958/SAMLV2.0-basics.pdf

 An assertion is a declaration of fact,
according to someone

 SAML assertions contain one or more
statements about a subject:

 Authentication statement

▪ Joe authenticated with a password at 9:00am

 Attribute statement (which itself can contain
multiple attributes):

▪ Joe is a manager with a $500 spending limit

https://www.oasis-open.org/committees/download.php/12958/SAMLV2.0-basics.pdf

https://www.oasis-open.org/committees/download.php/12958/SAMLV2.0-basics.pdf

 Structure

https://www.oasis-open.org/committees/download.php/12958/SAMLV2.0-basics.pdf

https://www.oasis-open.org/committees/download.php/12958/SAMLV2.0-basics.pdf

 Example

https://en.wikipedia.org/wiki/SAML_2.0

https://en.wikipedia.org/wiki/SAML_2.0

 Example explained
 In words, the assertion encodes the following information:

▪ The assertion "b07b804c-7c29-ea16-7300-4f3d6f7928ac"
was issued at time "2004-12-05T09:22:05Z"
by identity provider (https://idp.example.org/SAML2)
regarding subject (3f7b3dcf-1674-4ecd-92c8-1544f346baf8)
exclusively for service provider (https://sp.example.com/SAML2).

 The authentication statement, in particular, asserts the
following:
▪ The principal identified in the <saml:Subject> element

was authenticated at time "2004-12-05T09:22:00"
by means of a password sent over a protected channel.

 Likewise the attribute statement asserts that:
▪ The principal identified in the <saml:Subject> element

is a staff member at this institution.

https://en.wikipedia.org/wiki/SAML_2.0

https://en.wikipedia.org/wiki/SAML_2.0

 A SAML message is transmitted from one entity
to another either by value or by reference.
 A reference to a SAML message is called an artifact.

 The receiver of an artifact resolves the reference
by sending a request directly to the issuer of the
artifact

 Sending references may have sources in:
 Technical constraints, e.g. limited length of URL

 Security reasons, e.g. to not expose secret data to a
browser

https://www.oasis-open.org/committees/download.php/12958/SAMLV2.0-basics.pdf

https://www.oasis-open.org/committees/download.php/12958/SAMLV2.0-basics.pdf

 So, artifacts are a small, fixed-size, structured
data object pointing to a typically larger,
variably sized SAML protocol message

 Designed to be embedded in URLs and
conveyed in HTTP messages

 Allows for “pulling” SAML messages rather
than having to push them

 SAML defines one artifact format but you can
roll your own

https://www.oasis-open.org/committees/download.php/12958/SAMLV2.0-basics.pdf

https://www.oasis-open.org/committees/download.php/12958/SAMLV2.0-basics.pdf

 Assertion query and request
 Query for existing assertion based on simple reference, subject-

matching, or statement type, e.g. by <AssertionIDRequest>
 Authentication request (the most important one)

 SP requests a fresh authn assertion that adheres to various
requirements (specified by means of Authentication Context)

 Artifact resolution (“meta-protocol”)
 Dereferences an artifact to get a protocol message

 Name identifier management
 IdPs and SPs inform each other of changes to their mutual

understanding of what a principal's name is
 Name identifier mapping

 Privacy-preserving way for two SPs to refer to the same principal,
e.g. by obtaining encrypted ID <saml:EncryptedID>

 Single logout
 Signals to all SPs using the same session to drop the session

https://www.oasis-open.org/committees/download.php/12958/SAMLV2.0-basics.pdf

https://www.oasis-open.org/committees/download.php/12958/SAMLV2.0-basics.pdf

 SOAP
 Basic way for IdPs and SPs to send SAML protocol messages

 Reverse SOAP (PAOS)
 Multi-stage SOAP/HTTP exchange that allows an HTTP client to send

an HTTP request containing a SOAP response
 HTTP redirect

 Method to send SAML messages by means of HTTP 302
 HTTP POST

 Method to send SAML messages in base64-encoded HTML form
control

 HTTP artifact
 Way to transport an artifact using HTTP in two ways: URL query string

and HTML form control
 URI

 How to retrieve a SAML message by resolving a URI

https://www.oasis-open.org/committees/download.php/12958/SAMLV2.0-basics.pdf

https://www.oasis-open.org/committees/download.php/12958/SAMLV2.0-basics.pdf

 Web browser SSO
 SSO using standard browsers to multiple SPs: profiles Authn Request

protocol and HTTP Redirect, POST, and artifact bindings
 Enhanced client and proxy (ECP)

 SSO using ECPs: profiles Authn Request protocol and SOAP and PAOS
bindings

 IdP discovery
 One way for SPs to learn the IdPs used by a principal

 Single logout
 Name identifier management

 Profiles the NIM protocol with SOAP, HTTP redirect, HTTP POST, and
HTTP artifact bindings

 Artifact resolution
 Assertion query/request

https://www.oasis-open.org/committees/download.php/12958/SAMLV2.0-basics.pdf

https://www.oasis-open.org/committees/download.php/12958/SAMLV2.0-basics.pdf

 Within profiles, different flows and binding
choices are possible
 E.g., in the web browser SSO profile:

▪ Authn request from SP to IdP can use any of HTTP redirect
or HTTP POST or HTTP artifact

▪ IdP response to SP can use either HTTP POST or HTTP
artifact

 E.g., in the ECP SSO profile using the PAOS binding,
two flows are possible:
▪ ECP to SP, SP to ECP to IdP

▪ IdP to ECP to SP, SP to ECP
https://www.oasis-open.org/committees/download.php/12958/SAMLV2.0-basics.pdf

https://www.oasis-open.org/committees/download.php/12958/SAMLV2.0-basics.pdf

 Example 1: Browser/artifact flow, IdP-initiated

https://www.oasis-open.org/committees/download.php/12958/SAMLV2.0-basics.pdf

https://www.oasis-open.org/committees/download.php/12958/SAMLV2.0-basics.pdf

 Example 2: Browser/POST flow, SP-initiated

https://www.oasis-open.org/committees/download.php/12958/SAMLV2.0-basics.pdf

https://www.oasis-open.org/committees/download.php/12958/SAMLV2.0-basics.pdf

 More details one can see at Wikipedia
 https://en.wikipedia.org/wiki/SAML_2.0#SAML_2.0_Profiles

https://en.wikipedia.org/wiki/SAML_2.0#SAML_2.0_Profiles

 Internet Protocol
 Internet Protocol Password
 Kerberos
 Mobile One Factor Unregistered
 Mobile Two Factor Unregistered
 Mobile One Factor Contract
 Mobile Two Factor Contract
 Password
 Password Protected Transport
 Previous Session
 Public Key – X.509
 Public Key – PGP
 Public Key – SPKI

 Public Key – XML Signature
 Smartcard
 Smartcard PKI
 Software PKI
 Telephony
 Nomadic Telephony
 Personalized Telephony
 Authenticated Telephony
 Secure Remote Password
 SSL/TLS Cert-Based Client Authn
 Time Sync Token
 Unspecified

 Provide information about entities in the flow
 Identity Provider Metadata

▪ SSO Service Metadata

 Service Provider Metadata
▪ Assertion Consumer Service Metadata

 The information allows to
 Check correctness of service and identity providers

▪ e.g. there is no phishing on the line

 Validate the asserations based on the public keys

 Find endpoint to resove artifacts

 SAML V2.0 Basics
 https://www.oasis-open.org/committees/download.php/12958/SAMLV2.0-basics.pdf

 Wikipedia
 https://en.wikipedia.org/wiki/SAML_2.0

 SAML 2.0 Core
 https://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf

 SAML 2.0 Bindings
 https://docs.oasis-open.org/security/saml/v2.0/saml-bindings-2.0-os.pdf

 Profiles for the OASIS SAML V2.0
 https://svn.softwareboersen.dk/sosi-gw/tags/v1.0.1/vendor/doc/saml-profiles-2.0-os.pdf

 Profiles exaplained
 https://help.scorpionsoft.com/hc/en-us/articles/218317597-SAML-2-0-Profiles-explained-

Building-your-own-SAML-integrations

 ECP Profile
 https://indico.egi.eu/indico/event/1019/session/46/contribution/262/material/slides/0.pdf

https://www.oasis-open.org/committees/download.php/12958/SAMLV2.0-basics.pdf
https://en.wikipedia.org/wiki/SAML_2.0
https://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf
https://docs.oasis-open.org/security/saml/v2.0/saml-bindings-2.0-os.pdf
https://svn.softwareboersen.dk/sosi-gw/tags/v1.0.1/vendor/doc/saml-profiles-2.0-os.pdf
https://help.scorpionsoft.com/hc/en-us/articles/218317597-SAML-2-0-Profiles-explained-Building-your-own-SAML-integrations
https://indico.egi.eu/indico/event/1019/session/46/contribution/262/material/slides/0.pdf

WS-Trust

 Actors & scenario example:

 A wine web service (W-WS) with a policy

▪ Policy says that a SAML token is required with
▪ Age

▪ Department Of Driving License (DODL)

 A DODL web service (D-WS) with a policy

 A user (U) who wants wine

 Every actor has a certificate with a private key

Based on: http://channel9.msdn.com/Shows/Going+Deep/Vittorio-Bertocci-WS-Trust-Under-the-Hood

http://channel9.msdn.com/Shows/Going+Deep/Vittorio-Bertocci-WS-Trust-Under-the-Hood

 Dedicated to SOAP Web Services
 Based on
 WS-Security

▪ message authenticity, integrity, confidentiality

 WS-SecurityPolicy
▪ description of the security requirements of services via

assertions about the security mechanisms of the services
(i.e. algorithms and types of tokens that the service accepts).

 WS-Trust adds
 Security Token Service
 Protocol for requesting/issuing security tokens used

by WS-Security and described by WS-SecurityPolicy

http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-fed/WS-FederationSpec05282007.pdf?S_TACT=105AGX04&S_CMP=LP

http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-fed/WS-FederationSpec05282007.pdf?S_TACT=105AGX04&S_CMP=LP

 The flow (simplified)
 U gets metadata from W-WS
 U asks D-WS for a security token which fulfill policy
 U authenticates and gets the security token
 U uses the security token and buy a wine in W-WS

 Terminology

 D-WS we usually call Security Token Service (STS)

▪ Or Identity Provider (IP)

 W-WS we usually call Relying Party (RP)

 U we usually call client

 A very good video
 http://channel9.msdn.com/Shows/Going+Deep/Vittorio-Bertocci-WS-Trust-Under-the-Hood

 Some introductions
 http://fusesource.com/docs/esb/4.4.1/cxf_security/WsTrust-Intro.html

 http://msdn.microsoft.com/en-us/library/bb498017.aspx

 http://msdn.microsoft.com/en-us/library/ff650503.aspx

 http://documentation.progress.com/output/Iona/artix/5.5/security_guide_java/WsTrust-SSO-
Example.html

 How to create a STS
 http://msdn.microsoft.com/en-us/magazine/dd347547.aspx

http://channel9.msdn.com/Shows/Going+Deep/Vittorio-Bertocci-WS-Trust-Under-the-Hood
http://fusesource.com/docs/esb/4.4.1/cxf_security/WsTrust-Intro.html
http://msdn.microsoft.com/en-us/library/ff650503.aspx
http://msdn.microsoft.com/en-us/library/ff650503.aspx
http://documentation.progress.com/output/Iona/artix/5.5/security_guide_java/WsTrust-SSO-Example.html
http://msdn.microsoft.com/en-us/magazine/dd347547.aspx

WS-Federation

 Federation
 A collection of domains with a trust
 Allows interactions between users, applications and

other players
 Main Goal of WS-Federation
 Simplify the development of federated services (FS)

through cross-realm communication and management
of Federation Services

 Re-using the WS-Trust STS model and protocol.
 Single Sign-On inside trust boundaries

Based on:
http://docs.oasis-open.org/wsfed/federation/v1.2/os/ws-federation-1.2-spec-os.pdf
http://www.cs.virginia.edu/~acw/security/doc/Tutorials/WS-Federation.ppt

http://docs.oasis-open.org/wsfed/federation/v1.2/os/ws-federation-1.2-spec-os.pdf
http://www.cs.virginia.edu/~acw/security/doc/Tutorials/WS-Federation.ppt

 WS-Trust makes possible to have a basic
federation between IdP and RP

 WS-Federation
 Adds Federation Metadata to simplify the setup of

federated trust relationship between parties

 Adds Single Sign On & Single Sign Off

 Adds profiles for classic web applications

 Adds mechanism for better discovery

 Adds services for attributes and pseudonyms

 Adds claims transformation

 Active Requestor Profile

 Focus on SOAP Web Services

 Passive Requestor Profile

 Dedicated for browser client

 Based on URLs

 Uses redirections to send
messages

 Architecture of federation should be able to

 Model business requirements

 Leverage existing infrastructure

 Main trust topologies

 Direct trust

▪ Exchange

▪ Validation

 Indirect trust

 Delegation

 Supports different scenarios

(a) Direct connection (b) Firewall in between, trust by using certificates

 Direct trust with token exchange

 Direct trust with token validation

 Indirect trust

 Delegation

 Documentation

 Web Services Federation Language Version 1.2
http://docs.oasis-open.org/wsfed/federation/v1.2/os/ws-federation-1.2-spec-os.pdf

 Tutorials & presentation

 Understanding WS-Federation
http://msdn.microsoft.com/en-us/library/bb498017.aspx

 Claims-Based Architectures
http://msdn.microsoft.com/en-us/library/ff359108.aspx

 WS-Federation presentation
http://www.cs.virginia.edu/~acw/security/doc/Tutorials/WS-Federation.ppt

http://docs.oasis-open.org/wsfed/federation/v1.2/os/ws-federation-1.2-spec-os.pdf
http://docs.oasis-open.org/wsfed/federation/v1.2/os/ws-federation-1.2-spec-os.pdf
http://msdn.microsoft.com/en-us/library/ff359108.aspx
http://www.cs.virginia.edu/~acw/security/doc/Tutorials/WS-Federation.ppt

 In this presentation we’ve covered

 Open ID Connect, SAML2, WS-Trust, WS-Fed

 The main goals in those protocols

 Authenticate

 Express statements about the subject

 Support federation

 Support different scenarios

▪ In many cases the same ones

