
Paweł Rajba
pawel@cs.uni.wroc.pl
http://itcourses.eu/

mailto:pawel.rajba@gmail.com
http://kursy24.eu/

 Introduction
 Data consistency
 Data access control
 Data encryption
 In storage

 In transit
 Data availability
 Backup and restore strategy

 Transaction log strategy
 Auditing
 Policies

 SQL Server is a DBMS
 It evolved for many years

and now is a mature
product on the market

 One can install many
instances on one server

 Only one is the default

 Others are named

 Main services for the default instance
 MSSQLServer

 SQLServerAgent
 … and for a named instance
 MSSQLServer$instanceName

 SQLServerAgent$instanceName
 Main tools
 Microsoft SQL Server Management Studio

 SQL Server Profiler

 There 2 types of databases
 System and user

 System databases
 master

▪ Information about databases, its file locations
▪ Account information and other like endpoints, configuration, etc.

 tempdb
▪ Temporary workspace, used to processing queries, etc.
▪ After restart restored on the basis on model database

 msdb
▪ SQLServerAgent service database
▪ Includes information about job schedules, alerts, etc.

 model
▪ Database template

https://docs.microsoft.com/en-us/sql/relational-databases/databases/system-databases

https://docs.microsoft.com/en-us/sql/relational-databases/databases/system-databases

 Database files
 Main files – *.mdf

 Secondary – *.ndf

 Transaction log – *.ldf
 Transaction log and recovery model
 Full

 Bulk-logged
▪ Like full, but excluded bulk operations,

e.g. bulk, select..into, create index, writetext, updatetext

 Simple

 Authentication modes

 Windows

 Mixed mode

 We consider security in the following areas
 Data consistency

 Data access control

 Data encryption
▪ In storage

▪ In transit

 Data availability
▪ Backup and restore strategy

▪ Transaction log strategy

 Auditing

 Policies

 Secured by ACID property of transactions
 Right choice of isolation level
 Is that enough?

 What about business rules?

 Where are they implemented and where is the
validation executed?

 Transactional vs. eventual consistency

 Scopes

 Server level

 Database level

 Schema level

 Principals

 Entity who wants access to a resource

 Securables

 Resources that can be requested by principles

 Server-level principles (logins)
 SQL Server authentication Login
 Server role
 Windows authentication login for a Windows user
 Windows authentication login for a Windows group

 Every login has a SID
 Can be created…
 In MGMT studio (Security  Logins)
 CREATE LOGIN statement

 Some options
 MUST_CHANGE, DEFAULT_DATABASE = "…",

CHECK_EXPIRATION = ON, CHECK_POLICY = ON

https://docs.microsoft.com/pl-pl/sql/relational-databases/security/authentication-access/principals-database-engine

https://docs.microsoft.com/pl-pl/sql/relational-databases/security/authentication-access/principals-database-engine

 Database-level principals users
 Database User (there are many types)

 Database Role

 Application Role
 Basic operations:
 CREATE USER [TestUser] FOR LOGIN

[CustomUser] WITH DEFAULT SCHEMA=[dbo]
▪ After user is created there is no permission associated

 ALTER USER [TestUser] WITH login = [NewLogin]
▪ Useful when we attached database

https://docs.microsoft.com/pl-pl/sql/relational-databases/security/authentication-access/principals-database-engine

https://docs.microsoft.com/pl-pl/sql/relational-databases/security/authentication-access/principals-database-engine

 Special principals
 sa (login)

▪ System administrator with full power
▪ Member of the sysadmin fixed role

 dbo (db user)
▪ Stands for database owner
▪ Alias to the database owner when connected

 public (login, db user)
▪ Assigned to every login (on server) and every user (on db)
▪ Cannot be removed, but one can change the permissions

▪ It is recommended to not add deny, because it affects all users

 guest
▪ Present in every database
▪ Permissions granted to the guest user are inherited by users who have access to

the database, but who do not have a user account in the database

https://docs.microsoft.com/pl-pl/sql/relational-databases/security/authentication-access/principals-database-engine

https://docs.microsoft.com/pl-pl/sql/relational-databases/security/authentication-access/principals-database-engine

 Server-Roles
 There are 2 types
▪ 9 fixed server roles (builtin)
▪ sysadmin, serveradmin, securityadmin, processadmin, setupadmin,

bulkadmin, diskadmin, dbcreator, public
▪ The permissions that are granted cannot be changed

▪ Custom server roles
▪ Basic operations:

 CREATE SERVER ROLE [SomeRole]
 It is possibility to create custom server roles

 ALTER SERVER ROLE [sysadmin] ADD MEMBER [auser]

 List of permissions for a role
▪ sp_srvrolepermission 'securityadmin'

https://docs.microsoft.com/pl-pl/sql/relational-databases/security/authentication-access/server-level-roles

https://docs.microsoft.com/pl-pl/sql/relational-databases/security/authentication-access/server-level-roles

https://docs.microsoft.com/pl-pl/sql/relational-databases/security/authentication-access/server-level-roles

https://docs.microsoft.com/pl-pl/sql/relational-databases/security/authentication-access/server-level-roles

 Database roles
 There are 2 types:

▪ Fixed (predefined)
▪ db_owner, db_securityadmin, db_accessadmin, db_backupoperator,

db_ddladmin, db_datawriter, db_datareader, db_denydatawriter,
db_denydatareader

▪ Permissions that are granted cannot be changed
▪ List of permissions for role:

 sp_dbfixedrolepermission rolename

▪ Flexible (defined by user)
▪ How to manage roles?

 From SQL
 CREATE ROLE rolename
 ALTER ROLE rolename {ADD|DROP} MEMBER {username|rolename}

 From MGMT Studio

https://docs.microsoft.com/pl-pl/sql/relational-databases/security/authentication-access/database-level-roles

https://docs.microsoft.com/pl-pl/sql/relational-databases/security/authentication-access/database-level-roles

https://docs.microsoft.com/pl-pl/sql/relational-databases/security/authentication-access/database-level-roles

https://docs.microsoft.com/pl-pl/sql/relational-databases/security/authentication-access/database-level-roles

 Application roles
 Gives possibility to assign permission to a specific

application
 A scenario
▪ A user executes a client application.
▪ The client application connects to an instance of SQL Server

as the user.
▪ The application then executes the sp_setapprole stored

procedure with a password known only to the application.
▪ If the application role name and password are valid, the

application role is enabled.
▪ At this point the connection loses the permissions of the user

and assumes the permissions of the application role.

https://docs.microsoft.com/pl-pl/sql/relational-databases/security/authentication-access/application-roles

https://docs.microsoft.com/pl-pl/sql/relational-databases/security/authentication-access/application-roles

 In general
 Complete structure of tables (objects) and relationship

 In SQL Server
 Collection of objects within a database
 Database can have many schemas

 Basic operation:
 CREATE SCHEMA <Warehouse>

[AUTHORIZATION <User>]
▪ Authorization defines an owner

 Accesing schemas: [schema].[object]
▪ E.g. CREATE TABLE [Warehouse].[Invoice] (…)

 Default schema: [dbo] (owned by dbo)
 Changing a schema

▪ ALTER SCHEMA NewSchema TRANSFER dbo.Person

 Normally, every statement is executed in the
context of the connected user

 Impersonation can be achieved by EXEC AS

 EXECUTE AS {LOGIN | USER} = 'name'

 Return to the original context

 REVERT

https://docs.microsoft.com/pl-pl/sql/relational-databases/security/permissions-hierarchy-database-engine

https://docs.microsoft.com/pl-pl/sql/relational-databases/security/permissions-hierarchy-database-engine

 Managing permissions
 From MGMT Studio

▪ Open Database properties
▪ Change tab to permissions

 From SQL (there are much more syntax)
▪ GRANT { ALL [PRIVILEGES] }

| permission [(column [,...n])] [,...n]
[ON [class ::] securable] TO principal [,...n]
[WITH GRANT OPTION] [AS principal]

▪ REVOKE
<permission> [,...n]
[ON [<class_type> ::] securable]
[FROM | TO] principal [,...n]
[CASCADE]

▪ DENY { ALL [PRIVILEGES] }
| permission [(column [,...n])] [,...n]
[ON [class ::] securable] TO principal [,...n]
[CASCADE] [AS principal]

https://docs.microsoft.com/en-us/sql/t-sql/statements/statements

https://docs.microsoft.com/en-us/sql/t-sql/statements/statements

https://docs.microsoft.com/pl-pl/sql/relational-databases/security/permissions-database-engine

https://docs.microsoft.com/pl-pl/sql/relational-databases/security/permissions-database-engine

 Basic information

 master.sys.syslogins

 db.sys.sysusers

 db.sys.database_principals

 db.sys.database_permissions

 db.sys.database_role_members

 Look at permissions:

 fn_my_permissions

 Every securable has an owner
 Owner can do everything with an object

 Anyone can revoke owner’s privileges

 User can’t be dropped if it owns something
 By default an owner of an object is a database

owner
 Changing ownership
 ALTER AUTHORIZATION ON <Object> TO <User>

 More:
▪ http://msdn.microsoft.com/en-us/library/ms187359.aspx

http://msdn.microsoft.com/en-us/library/ms187359.aspx

 Access in chain (referenced objects) is verified
differently than in separated objects

 If a referenced object has the same owner as the
source object, permissions are not checked

 If a procedure references a table and owners are
the same, table permissions are not checked

 Ownership chaining doesn’t apply to dynamic
SQL (in such case all permissions must be
explicitly granted)

 In other words:

 Let’s assume that there is a chain of calls
O1O2O3…On
and all Oi has the same owner

 Then permissions are checked only on access to O1

 Let’s see the consequences

 Practical example: roles usage

 There is default good way to give an EXECUTE
permission to a user

 The solution
▪ CREATE ROLE db_executor
GRANT EXECUTE TO db_executor
EXEC sp_addrolemember 'db_executor', 'username'

 Practical example: the ownership chain consequences
CREATE TABLE SomeData (Number INT)
GO

CREATE PROCEDURE ShowSomeData AS SELECT * FROM SomeData
GO

--ALTER AUTHORIZATION ON SomeData TO dbo --SCHEMA OWNER
--ALTER AUTHORIZATION ON ShowSomeData TO dbo --SCHEMA OWNER
--GO

SELECT * FROM sys.all_objects WHERE name LIKE '%SomeData'
GO

GRANT EXECUTE ON ShowSomeData TO Test
DENY SELECT ON SomeData TO Test
GO

EXECUTE AS USER = 'Test'
GO
SELECT * FROM SomeData
GO
EXEC ShowSomeData
GO
REVERT
GO

 There are situations in which protecting
access to a database is not enough
 Someone breach this access level protection

 Access rights are assigned in a wrong way

 Backup files are stolen

 Protection of filesystem is compromised

 And many others...
 If we have a very sensitive data, encryption in

a database is a one more layer of defense

 Encryption can be
achieved through
different ways

 Every way is implied by
a different chain of keys

 Every way has pros and
cons, so should be
evaluated according to
the requirements

More:

http://technet.microsoft.com/en-us/library/ms189586(v=sql.110).aspx

http://technet.microsoft.com/en-us/library/ms189586(v=sql.110).aspx

 Asymmetric Keys
 Symmetric Keys
 Certificates
 Extensible Key Management (EKM)

 Since SQL Server 2008

 Gives a possibility to manage keys by an external
source such as Hardware Security Module (HSM)

 Column Enryption: data is encrypted explicitly

 Applications and users are impacted

 One can choose what exactly should be encrypted
– no overhead for encryption less sensitive data

 TDE: the whole database is encrypted

 Encryption is hidden and transparent, so if one can
connect, one can see the data

 Everything is encrypted, also less sensitive data

 The choice depends on business needs

 This is supported by set of built-in functions and procedures
together with key hierarchy

 Operations are performed manually
 Encrypted data needs to be stored in a varbinary column type
 Main steps

 Create database master key for every database
▪ Notice: service master key has been created when the instance has been created

 Create a certificate to protect keys
 Create a symmetric key which is protected by the certificate created in

the previous step
 Enjoy encrypting data: open the symmetric key, encrypt the data, close

the key
 Decryption is similar to encryption, but a function for decryption

should be used

USE Test

CREATE TABLE Person
(

ID INT PRIMARY KEY,
FirstName VARCHAR(50),
LastName VARCHAR(50),
CreditCard VARBINARY(200)

)
GO

INSERT INTO Person (ID, FirstName, LastName) VALUES(1, 'J1', 'K1');
INSERT INTO Person (ID, FirstName, LastName) VALUES(2, 'J1', 'K1');
INSERT INTO Person (ID, FirstName, LastName) VALUES(3, 'J1', 'K1');
GO

CREATE MASTER KEY ENCRYPTION BY PASSWORD='SomePassword'
GO

CREATE CERTIFICATE CertForTest WITH SUBJECT='Test'
GO

CREATE SYMMETRIC KEY CreditCardKey WITH ALGORITHM=TRIPLE_DES ENCRYPTION BY CERTIFICATE CertForTest
GO

OPEN SYMMETRIC KEY CreditCardKey DECRYPTION BY CERTIFICATE CertForTest
UPDATE Person SET CreditCard = ENCRYPTBYKEY(KEY_GUID('CreditCardKey'), '11111') WHERE ID=1;
UPDATE Person SET CreditCard = ENCRYPTBYKEY(KEY_GUID('CreditCardKey'), '22222') WHERE ID=2;
UPDATE Person SET CreditCard = ENCRYPTBYKEY(KEY_GUID('CreditCardKey'), '33333') WHERE ID=3;
CLOSE SYMMETRIC KEY CreditCardKey
GO

SELECT * FROM Person
GO

OPEN SYMMETRIC KEY CreditCardKey DECRYPTION BY CERTIFICATE CertForTest
SELECT ID, FirstName, LastName, CONVERT(VARCHAR, DECRYPTBYKEY(CreditCard)) [Credit Card] FROM Person
CLOSE SYMMETRIC KEY CreditCardKey
GO

 TDE is one of usages of encryption by symmetric keys
 There is whole database encrypted by a symmetric key called

database encryption key
 Database encryption key is protected by certificate which is

protected by database master key or asymmetric key from EKM
 Available only on Enterprise Edition or Developer Edition
 Provides query optimization
 Main steps

 Create master key encryption password
 Create a certificate
 Backup the certificate
 Create a database encryption symmetric key
 Alter the database to set encryption on
 Optionally monitor the encryption process

 More: http://msdn.microsoft.com/en-us/library/bb934049.aspx

http://msdn.microsoft.com/en-us/library/bb934049.aspx

USE master

CREATE MASTER KEY ENCRYPTION BY PASSWORD='SomePassword'
GO

CREATE CERTIFICATE TestDatabaseServerCertificate WITH SUBJECT='Test Certificate'
GO

BACKUP CERTIFICATE TestDatabaseServerCertificate
TO FILE ='C:\Temp\TestDatabaseServerCertificate'
WITH PRIVATE KEY(

FILE = 'C:\Temp\TestDatabaseServerCertificate.private',
ENCRYPTION BY PASSWORD = 'AnotherPassword')

USE Test

CREATE DATABASE ENCRYPTION KEY WITH ALGORITHM = AES_128
ENCRYPTION BY SERVER CERTIFICATE TestDatabaseServerCertificate
GO

ALTER DATABASE Test SET ENCRYPTION ON
GO

SELECT DB_NAME(database_id), encryption_state, key_algorithm, key_length
FROM sys.dm_database_encryption_keys
GO

 There are many available algorithms:

 DES, Triple DES, TRIPLE_DES_3KEY, RC2, RC4,
128-bit RC4, DESX, 128-bit AES, 192-bit AES,
256-bit AES and more

 However, other than
AES_128, AES_192, and AES_256
are considered as deprecated

 When it comes to communication we consider two
challenges
 Storing credentials to a database server in a secure way

▪ This was covered in OWASP Top 10 topic

 Encrypting communication channel
▪ SQL Server supports encrypting connection using TLS

▪ A valid certificate is required

▪ DEMO
▪ Open: Configuration Tools SQL Server Configuration Manager
▪ Open: Properties for SQL Server Network Configuration

▪ More
▪ https://docs.microsoft.com/en-us/sql/database-engine/configure-

windows/enable-encrypted-connections-to-the-database-engine
▪ http://technet.microsoft.com/en-us/library/ms189067(v=sql.105).aspx

https://docs.microsoft.com/en-us/sql/database-engine/configure-windows/enable-encrypted-connections-to-the-database-engine
http://technet.microsoft.com/en-us/library/ms189067(v=sql.105).aspx

 Available since SQL Server 2016
 Combines encryption both in storage and transit
 Encryption/decryption executed on client

 Requires .NET 4.6 SQL Client Driver
 Column level encryption

 Spefic columns need to be selected
 Types of encryption

 Deterministic: the same ciphertext for the same values
▪ One can benefit from equality joins, grouping, indexing, etc.
▪ … but it is less secure, e.g. columns is limited set of values like True/False,

North/South/East/West values can be discovered

 Randomized: different ciphertexts for different values
▪ More secure, but one can’t benefit from making operation on a database

 Transparent for the applications
 Driver will handle the traffic „on the fly”
 A section: Column Encryption Setting=Enabled

needs to be added to the connection string

https://docs.microsoft.com/pl-pl/sql/relational-databases/security/encryption/always-encrypted-database-engine

https://docs.microsoft.com/pl-pl/sql/relational-databases/security/encryption/always-encrypted-database-engine

 It is a mechanism which allows to monitor who
is doing what on which objects

 There a lot of possibilities what can be audited
 It is based on Extended Events, new feature

since SQL Server 2008

 Audit is specialized usage of Extended Events

 DEMO: Let’s create Server-Level audit
 MGMT  Security Audits
▪ Create an audit DatabaseRoleMemberChange

 MGMT  Security  Server Audit Specifications
▪ Create a specification DatabaseRoleMemberChange related

to DatabaseRoleMemberChange event

 Add any user to any role
▪ USE Test; ALTER ROLE db_owner ADD MEMBER test

 MGMT  Security Audits
▪ Pick the audit

▪ Choose View Audits Logs option

 DEMO: Let’s create Database-Level audit
 MGMT  Security Audits
▪ Create TestDatabaseSelect audit

 MGMT Test database Security 
Server Audit Specification
▪ Create TestDatabaseSelect specification on
▪ SELECT event

▪ Osoba table

▪ [public] role

 Perform a select on the Osoba table in Test DB

 View TestDatabaseSelect audit

 There is another way to see audit entries
which is based on review files

 DEMO
 SELECT * INTO Test.dbo.SQLAudits
FROM sys.fn_get_audit_file(

'C:\Temp\TestDatabase*.sqlaudit',Default, Default);

 SELECT * FROM Test.dbo.SQLAudits

 Allows to apply and force policies and rules
 Three main components

 Policy management. Policy administrators create policies.
 Explicit administration. Administrators select one or more

managed targets and explicitly check that the targets comply
with a specific policy, or explicitly make the targets comply with
a policy.

 Evaluation modes. There are four evaluation modes:
▪ On demand. This mode evaluates the policy when directly specified by

the user.
▪ On change: prevent. This automated mode uses DDL triggers to

prevent policy violations.
▪ On change: log only. This automated mode uses event notification to

evaluate a policy when a relevant change is made.
▪ On schedule. This automated mode uses a SQL Server Agent job to

periodically evaluate a policy.
https://docs.microsoft.com/en-us/sql/relational-databases/policy-based-management/administer-servers-by-using-policy-based-
management

https://docs.microsoft.com/en-us/sql/relational-databases/policy-based-management/administer-servers-by-using-policy-based-management

 Let’s see some examples
 MGMT Management  Policy Management

 Review Facets

 Create a policy RecoveryModelFull for ensuring that every
database has a full recovery model
▪ Create a condition using Database Options facet

▪ Create a policy based on that condition and evaluate it

 Create a policy for ensuring that no table is created in dbo
schema (do the same for procedure)
▪ Create a condition using Table facet (analogously Stored Procedure)

▪ Create a policy based on that condition and evaluate it

▪ Try to enable that policy and try to create an object in that schema
▪ E.g. CREATE PROCEDURE dbo.GetServerName AS SELECT @@SERVERNAME

 Data can be lost

 By accident (someone forget WHERE clause when
DELETE, click a wrong button)

 By WANNACRY (or any other malicious crap)

 Natural disasters

 Theft, robbery

 … many others

 Making backups is one of ways to mitigate
the data lost

 Questions need to be answer for backups:
 Which databases to backup?

 How often to do that? How often data are
modified?

 What is acceptable period of data loss?

 How fast we need data back after failure?
▪ Disk vs. Tape

 Where to store backups?
▪ It should be different location?

 How backups are protected?

 Main types of backups
 Full

 Differential backups

 Transaction log backups
 There are also
 File backups

 Filegroup backups

 Partial backups
 To make differential and transaction log backup you need
 Full backup

 Correct sequence of differential or transaction log backups

 Very important thing:

Test your backup by regular restoration

 High Availability

 Failover clustering

 Database mirroring

 Log shipping

 Replication

 Documentation from Microsoft
 https://docs.microsoft.com/pl-pl/sql/relational-databases/security/security-center-for-sql-server-database-

engine-and-azure-sql-database
 Who is the Default Owner of your Database and Server Objects?

 http://sqlity.net/en/2180/default-owner/
 Schema-Based Access Control for SQL Server Databases

 https://www.simple-talk.com/sql/sql-training/schema-based-access-control-for-sql-server-databases/
 Understanding SQL Server fixed database roles

 https://www.mssqltips.com/sqlservertip/1900/understanding-sql-server-fixed-database-roles/
 System Compatibility Views (Transact-SQL)

 https://docs.microsoft.com/en-us/sql/relational-databases/system-compatibility-views/system-
compatibility-views-transact-sql

 Transact-SQL statements
 https://docs.microsoft.com/en-us/sql/t-sql/statements/statements

 System Stored Procedures (Transact-SQL)
 https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/system-stored-

procedures-transact-sql
 Catalog Stored Procedures (Transact-SQL)

 https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/catalog-stored-
procedures-transact-sql

 sys.objects (Transact-SQL)
 https://docs.microsoft.com/en-us/sql/relational-databases/system-catalog-views/sys-objects-transact-sql

 Security Through Ownership Chains
 http://sqlmag.com/sql-server/security-through-ownership-chains

https://docs.microsoft.com/pl-pl/sql/relational-databases/security/security-center-for-sql-server-database-engine-and-azure-sql-database
http://sqlity.net/en/2180/default-owner/
https://www.simple-talk.com/sql/sql-training/schema-based-access-control-for-sql-server-databases/
https://www.mssqltips.com/sqlservertip/1900/understanding-sql-server-fixed-database-roles/
https://docs.microsoft.com/en-us/sql/relational-databases/system-compatibility-views/system-compatibility-views-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/statements/statements
https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/system-stored-procedures-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/catalog-stored-procedures-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-catalog-views/sys-objects-transact-sql
http://sqlmag.com/sql-server/security-through-ownership-chains

