
Random Number
Generators

Błażej Sowa

Definition

Random Numbers - numbers that occur in a
sequence such that two conditions are met:

1. the values are uniformly distributed over a
defined interval or set

2. it is impossible to predict future values based
on past or present ones.

Practical applications and uses

● Gambling
● Computer simulation
● Statistical sampling
● Gaming
● Cryptography

○ key generation
○ one-time pads
○ salts

Types of RNGs

● Pseudo-random Number Generator
algorithm that uses mathematical
formulas to produce sequences of
numbers approximating the properties of
random numbers

● True Random Number Generator
device that generates random numbers
from a physical process, rather than a
computer program

PRNG vs TRNG

Characteristic
Pseudo-Random
Number
Generators

True Random
Number
Generators

Efficiency Excellent Poor

Determinism Deterministic Nondeterministic

Periodicity Periodic Aperiodic

Randomness Tests

Simple Visual Analysis

Representing in a graphical or visual data
and observing by human eye

TestU01

● A software library, implemented in the ANSI C
language, that offers a collection of utilities for the
empirical statistical testing of random number
generators

● Implements several types of random number
generators in generic form

● Offers several batteries of tests including
○ "Small Crush" (10 tests),
○ "Crush" (96 tests), and
○ "Big Crush" (160 tests)

TestU01 - Example tests

● BirthdaySpacings - Choose random points on a large
interval. The amount of spacings between the points
that occur more than once should be asymptotically
exponentially distributed.

● Collisions - Set up a large number of groups relative to
the length of the possible values, then calculate
number of collisions (number of times a point hits a
cell already occupied)

● Simplified Poker - Generate n groups of k
integers, by making nk calls to the generator, and for
each group compute the number of distinct integers in
the group

Examples of PRNG

Middle-square method

● Developed by John von Neumann
around 1946

● First ever PRNG?

● The next number in a
sequence is obtained
by squaring the
previous one and
slicing out the middle
digits

Middle-square method

● no matter what seed value
is used, the sequence will
eventually fall into a short
repeated cycle of numbers

● Nicholas Metropolis
reported sequences of
750,000 digits before
"destruction" by means of
using 38-bit numbers

Directed graph of all 100 2-digit
pseudorandom numbers

Middle-square method

"Any one who considers arithmetical
methods of producing random digits
is, of course, in a state of sin."

John von Neumann

Middle-square method

"Any one who considers arithmetical
methods of producing random digits
is, of course, in a state of sin."

John von Neumann

Can it be improved?

Middle Square Weyl Sequence
PRNG

● A new implementation of John von Neumann’s
middle square random number generator proposed
by Bernard Widynski in 2017

● A Weyl sequence is utilized to keep the generator
running through a long period:

(k, 2k, 3k, 4k, ….
The sequence for any odd integer k < 2n is
equidistributed modulo 2n

● The period of this PRNG is at least 2n

Middle Square Weyl Sequence
PRNG

1. The previous result is
squared (modulo 264)

2. Next value of Weyl
sequence is added

3. The middle is extracted by
shifting right 32 bits (most
significant bits of the lower
64 bits of the result)

Middle Square Weyl Sequence
PRNG

1. The previous result is
squared (modulo 264)

2. Next value of Weyl
sequence is added

3. The middle is extracted by
shifting right 32 bits (most
significant bits of the lower
64 bits of the result)

● 2 different x values can produce the same sequences
● The constant s should be non-zero in the upper 32 bits and 1 in the

least significant bit. That gives us (263 - 231) different seed values
● The MSWS generator passes all the tests in the stringent BigCrush

battery in TestU01
● It’s fast!

Linear congruential generator

where, X is the sequence of pseudorandom
values, and:

m, 0 < m - the modulus
a, 0 < a < m - the multiplier
c, 0 ≤ c < m - the increment
X0, 0 ≤ X0 < m - the seed

᱐n+1 = (aXn + c) mod m

Linear congruential generator

● included in built-in rand() functions in runtime libraries of
various compilers, such as: glibc, Turbo Pascal, Java's
java.util.Random

● fast and require minimal memory
● with appropriate choice of parameters, the period is

known and long
● a modulo-264 LCG which returns the high 32 bits passes

TestU01's SmallCrush suite and a 96-bit LCG passes the
most stringent BigCrush suite.

᱐n+1 = (aXn + c) mod m

Linear congruential generator

● m prime, c=0
○ The period is m−1 if the multiplier a is chosen to be a

primitive element of the integers modulo m
● m a power of 2, c=0

○ allows the modulus operation to be computed by
simply truncating the binary representation

○ maximal period m/4, achieved if a ≡ 3 or a ≡ 5 (mod 8)
○ low bits have a shorter period than the high bits. The

lowest-order bit of X never changes (X is always odd),
and the next two bits alternate between two states.

● c≠0
○ correctly chosen parameters allow a period equal to

m, for all seed values. This will occur if and only if:
i. m and c are relatively prime,

ii. a-1 is divisible by all prime factors of m,
iii. a-1 is divisible by 4 if m is divisible by 4

Linear Feedback Shift Register

A shift register whose input bit is a linear function of its
previous state (most commonly XOR function)

Fibonacci LFSR

Galois LFSR

Linear Feedback Shift Register

● Fibonacci and Galois LFSRs produce the same output
stream, but software implementation of Galois LFSR is
more efficient, as the XOR operations can be implemented
a word at a time

if (n & 1) { n = (n >> 1) ^ t; }
 else { n = (n >> 1); }

● A maximum-length LFSR has a period of 2m - 1
● The arrangement of taps for feedback in an LFSR can be

expressed as a polynomial mod 2

x16 + x14 +x13 + x11+1
The LFSR is maximal-length if and only if the corresponding
feedback polynomial is primitive

● LFSRs can be implemented in hardware, and this makes
them useful in applications that require very fast
generation of a pseudo-random sequence

Bits # Perfect Feedbacks
4 2
5 6
6 6
7 18
8 16
9 48

10 60
11 176
12 144
13 630
14 756
15 1,800
16 2,048
17 7,710
18 7,776
19 27,594
20 24,000
21 84,672
22 120,032
23 356,960
24 276,480
25 1,296,000
26 1,719,900
27 4,202,496
28 4,741,632
29 18,407,808
30 17,820,000
31 69,273,666
32 67,108,864

KISS (Keep It Simple Stupid)

● Family of pseudorandom number generators
introduced by George Marsaglia

● The original 1993 generator combines:
○ linear congruential generator
○ 2 linear feedback shift registers

has a period 295, good speed and good statistical
properties; however, it fails the LinearComplexity test in
the Crush and BigCrush batteries

● A newer version from 1999 combines:
○ linear congruential generator
○ Xorshift (subset of LFSRs, more efficient)
○ 2 multiply-with-carry generators (variation of LCG)

has a period of 2123 and passes all tests in TestU01

KISS (Keep It Simple Stupid)

"A random number generator is like sex:
When it's good, its wonderful;
And when it's bad, it's still pretty good."

Add to that, in line with my recommendations
on combination generators;

"And if it's bad, try a twosome or threesome."

George Marsaglia

Cryptographically secure
pseudorandom number
generators (CSPRNG)

CSPRNG

Most PRNGs are not suitable for use in cryptography. To be
considered Cryptographically Secure they must (besides
passing statistical tests):

● Satisfy the next-bit test - given the first k bits of a
random sequence, there is no polynomial-time
algorithm that can predict the (k+1)th bit with
probability of success non-negligibly better than 50%

● Withstand "state compromise extensions" - If part of it’s
state has been revealed or correctly guessed, it should
be impossible to reconstruct the stream of random
numbers prior to the revelation

Blum Blum Shub

● M = pq is the product of two large primes p and q
● The seed X0 should be an integer that is co-prime to M
● The two primes, p and q, should both meet property

p ≡ 3 (mod 4)
● the output is commonly either the bit parity of Xn+1 or

one or more of the least significant bits of Xn+1

● security of BBS comes from the computational
difficulty of solving the quadratic residuosity problem

● requires to use of multi-precision number system
● it’s very inefficient

᱐n+1 = X2
 mod Mn

ANSI X9.17 PRNG

EDE - triple-DES encryption function
K1, K2 - pair of 56-bit keys used for 3DES module
DT - 64-bit representation of current date/time
V - 64-bit seed value
R - 64-bit pseudorandom value

Entropy

● Entropy (information theory)
Average amount of information produced by a
stochastic source of data. When the data source has a
lower-probability value (i.e., when a low-probability
event occurs), the event carries more "information"
("surprisal") than when the source data has a
higher-probability value

● Entropy (Computing)
Randomness collected by an operating system or
application for use in cryptography or other uses that
require random data, often collected from hardware
sources

Sources of entropy

● Commonly Used
○ timings between key presses
○ mouse position and movements
○ timings between interrupts and

related events
● Potential

○ noise from microphone input
○ noise from TV or radio tuner
○ air turbulence inside disk drive
○ camera pointed at constantly moving

picture

Linux kernel
● generates entropy from keyboard timings, mouse

movements, and IDE timings
● makes the random character data available to other

operating system processes through the special files:
○ /dev/random

creates random values from entropy pool. When read,
the /dev/random device will only return random bytes
within the estimated number of bits of noise in the
entropy pool. When the entropy pool is empty, reads
from /dev/random will block until additional
environmental noise is gathered

○ /dev/urandom
uses a CSPRNG periodically reseeded with bits from
entropy pool to output a stream of random data. The
call will never block

Hardware Random
Number Generators

ERNIE (Electronic Random Number
Indicator Equipment)

● designed by the now-famous
Bletchley Park WWII codebreaking
team in the 1940s

● used to generate random numbers
for the UK Premium Bond lottery

● generated bond numbers based on
the signal noise created by neon
tubes

● To quell fears about the fairness
and accuracy of ERNIE, the Post
Office made a great documentary
called The Importance of Being
E.R.N.I.E

Quantum Random Number
Generators

● Quantum mechanics predicts that certain physical
phenomena, are fundamentally random and cannot, in
principle, be predicted. Because of that, they are the
‘gold standard’ for random number generation

● Some quantum phenomena used for random number
generation include:
○ A nuclear decay radiation source
○ Photons travelling through a semi-transparent

mirror
○ Shot noise, a quantum mechanical noise source in

electronic circuits

LavaRand
● Designed and patented by Silicon Graphics around 1996
● Camera directed to a wall o lava lamps
● generates a fixed-size chunks of fresh entropy called a “beacon”.

It then mixes this beacon into the entropy system (on Linux, by
writing the beacon to /dev/random)

● As of 2017, Cloudflare maintains a similar system of lava lamps
for securing approximately 10% of the Internet's traffic

Attacks at RNGs

● Direct cryptanalytic attack
the attacker is directly able to distinguish between PRNG
outputs and random outputs. So an attacker directly
exploits a vulnerability in the cryptographic
properties of the PRNG system.

● Input-based attacks
the attacker has access to the input of the PRNG and
uses knowledge or control over the input to cryptanalyze
the PRNG.

● State compromise extension attacks
 the internal secret state of the RNG is known at some
time and used by the attacker to predict future output or
to recover previous outputs

Attacks at RNGs

Microsoft Windows 2000/XP RNG
“CryptGenRandom”
● In November 2007, Leo Dorrendorf published a paper titled

Cryptanalysis of the Random Number Generator of the Windows
Operating System.

● The paper presented serious weaknesses in Microsoft's
approach at the time. The paper's conclusions were based on
disassembly of the code in Windows 2000, but according to
Microsoft applied to Windows XP as well.

● The paper's attacks are based on the fact that CryptGenRandom
uses the stream cipher RC4, which can be run backwards once
its state is known

● They also take advantage of the fact that CryptGenRandom runs
in user mode, allowing anyone who gains access to the operating
system at user level, for example by exploiting a buffer overflow,
to get CryptGenRandom's state information for that process.

Debian OpenSSL

● On May 13th, 2008 the Debian project announced that
Luciano Bello found an interesting vulnerability in the
OpenSSL package they were distributing.

● The bug was introduced in 2006 by 2 lines of code that
were removed because they caused the Valgrind and
Purify tools to produce warnings

● The side effect of crippling the seeding process for the
OpenSSL PRNG. Instead of mixing in random data for
the initial seed, the only "random" value that was used
was the current process ID (32,768 possible values)

● The vulnerability was promptly patched after it was
reported, but any services still using keys that were
generated by the old code remain vulnerable

Predictable Netscape seed

● Early versions of Netscape's Secure Socket Layer (SSL)
encryption protocol used pseudo-random quantities
derived from a PRNG seeded with three variable values:
○ time of the day
○ process ID
○ parent process ID

● These quantities are often relatively predictable, and so
have little entropy and are less than random, and so that
version of SSL was found to be insecure as a result.

● The problem in the running code was discovered in 1995
by Ian Goldberg and David Wagner, who had to reverse
engineer the object code because Netscape refused to
reveal the details of its random number generation

Possible Backdoor in Elliptical Curve DRBG

● The U.S. National Institute of Standards and Technology
has published a collection of "deterministic random bit
generators" it recommends as NIST Special Publication
800-90

● One of the generators, Dual_EC_DRBG, was favored by the
National Security Agency.

● In August 2007, Dan Shumow and Niels Ferguson of
Microsoft showed that the constants could be constructed
in such a way as to create a kleptographic backdoor in the
algorithm

● In December 2013, Reuters reported that documents
released by Edward Snowden indicated that the NSA had
paid RSA Security $10 million to make Dual_EC_DRBG the
default in their encryption software

Resources and
Further Reading

Resources and Further Reading

● brief history of random number generators

https://medium.freecodecamp.org/a-brief-history-of-random-numbers-9498737f5b6c

● TestU01

http://simul.iro.umontreal.ca/testu01/tu01.html

● Middle-square method

https://en.wikipedia.org/wiki/Middle-square_method

● Middle-square Weyl Sequence

https://arxiv.org/pdf/1704.00358.pdf

● Linear Congruential Generator

https://en.wikipedia.org/wiki/Linear_congruential_generator

● Linear Feedback Shift Register

http://datagenetics.com/blog/november12017/index.html

● KiSS (Keep It Simple Stupid)

https://en.wikipedia.org/wiki/KISS_(algorithm)

https://eprint.iacr.org/2011/007.pdf

● Cryptographically secure pseudorandom number generators

https://en.wikipedia.org/wiki/Cryptographically_secure_pseudorandom_number_generator

https://medium.freecodecamp.org/a-brief-history-of-random-numbers-9498737f5b6c
http://simul.iro.umontreal.ca/testu01/tu01.html
https://en.wikipedia.org/wiki/Middle-square_method
https://arxiv.org/pdf/1704.00358.pdf
https://en.wikipedia.org/wiki/Linear_congruential_generator
http://datagenetics.com/blog/november12017/index.html
https://en.wikipedia.org/wiki/KISS_(algorithm)
https://eprint.iacr.org/2011/007.pdf
https://en.wikipedia.org/wiki/Cryptographically_secure_pseudorandom_number_generator

Resources and Further Reading

● entropy

https://en.wikipedia.org/wiki/Entropy_(computing)

https://hackaday.com/2017/11/02/what-is-entropy-and-how-do-i-get-more-of-it/

● /dev/random

https://www.2uo.de/myths-about-urandom/

● ERNIE RNG

https://en.wikipedia.org/wiki/Premium_Bond#ERNIE

https://www.youtube.com/watch?time_continue=360&v=rOAfbb5D3Dw

● Quantum Random Number Generators

https://en.wikipedia.org/wiki/Hardware_random_number_generator#Quantum_rando

m_properties

● Nuclear powered random number generator

https://hackaday.com/2015/08/16/hackaday-prize-entry-nuclear-powered-random-nu

mber-generator/

● LavaRand

https://en.wikipedia.org/wiki/Lavarand

https://blog.cloudflare.com/lavarand-in-production-the-nitty-gritty-technical-details/

https://en.wikipedia.org/wiki/Entropy_(computing)
https://hackaday.com/2017/11/02/what-is-entropy-and-how-do-i-get-more-of-it/
https://www.2uo.de/myths-about-urandom/
https://en.wikipedia.org/wiki/Premium_Bond#ERNIE
https://www.youtube.com/watch?time_continue=360&v=rOAfbb5D3Dw
https://en.wikipedia.org/wiki/Hardware_random_number_generator#Quantum_random_properties
https://en.wikipedia.org/wiki/Hardware_random_number_generator#Quantum_random_properties
https://hackaday.com/2015/08/16/hackaday-prize-entry-nuclear-powered-random-number-generator/
https://hackaday.com/2015/08/16/hackaday-prize-entry-nuclear-powered-random-number-generator/
https://en.wikipedia.org/wiki/Lavarand
https://blog.cloudflare.com/lavarand-in-production-the-nitty-gritty-technical-details/

Resources and Further Reading

● RNG Attacks

https://en.wikipedia.org/wiki/Random_number_generator_attack

● Debian OpenSSL Attack

https://www.schneier.com/blog/archives/2008/05/random_number_b.html

● Microsofts CyptGenRandom vulnerability

https://www.theregister.co.uk/2007/11/13/windows_random_number_gen_flawed/

● NSA backdoor

https://en.wikipedia.org/wiki/Dual_EC_DRBG

https://blog.cloudflare.com/how-the-nsa-may-have-put-a-backdoor-in-rsas-cryptograp

hy-a-technical-primer/

https://en.wikipedia.org/wiki/Random_number_generator_attack
https://www.schneier.com/blog/archives/2008/05/random_number_b.html
https://www.theregister.co.uk/2007/11/13/windows_random_number_gen_flawed/
https://en.wikipedia.org/wiki/Dual_EC_DRBG
https://blog.cloudflare.com/how-the-nsa-may-have-put-a-backdoor-in-rsas-cryptography-a-technical-primer/
https://blog.cloudflare.com/how-the-nsa-may-have-put-a-backdoor-in-rsas-cryptography-a-technical-primer/

