
Paweł Rajba
pawel@ii.uni.wroc.pl
http://www.itcourses.eu/

mailto:pawel@ii.uni.wroc.pl
http://www.kursy24.eu/

 Introduction
 Drivers for REST
 Properties of REST
 Common wrong assumptions
 REST constraints
 Uniform Interface
 RPC vs. REST
 Maturity Model
 Client
 Is always REST the best?

 Issues with SOAP web services

 Tight coupling between client and server

 When changing server API, all clients need to be
rebuild and tested

 No support for mobile clients

 Many complicated specifications very often
supported only partly by libraries

 Next level of web services: REST

 Interoperability
 Network based API vs. library based API

 Many services in the web
 Devices

 phones, tablets, laptops, cars, fridges benefits
from different services

 Scalability
 architecture should allow to benefit from

infrastructure scalability, e.g. benefit from cloud
like Azure or Amazon

 Heterogeny
 Scalability
 Evolvability
 Visibility
 Reliability
 Efficiency
 Performance
 Manageability

 REST is not

 RPC (with SOAP and WSDL)

 HTTP (not every HTTP API is RESTful)

 URIs (cool URLs don’t make REST)

 REST is an architectural style

 Representational State Transfer (state machine)

 Roy Fielding and year 2000

 Network liability
 always there are problems, even in big cloud providers

 Latency
 there is always one, in distributed systems even bigger

 Bandwidth
 there is no infinite one, sometimes a cost is associated

 Security
 network is not secure

 Network topology
 is changing, client and servers are moving around,

especially in cloud environment, e.g. IP addresses, DNS
names, relative paths and URLS (e.g. in scaling)

 Administration
 usually there is no one administrator, system needs to be

created in a way of easy to administer and low learning
curve

 Transport cost
 is not zero, someone needs to pay for it (even it is hidden)

 Heterogeneous network
 node in the Web are different

 Complexity
 it could a problem that not everyone understands how to

use a service (understands semantic behind the methods,
data model)

 Client-Servers separation of concerns

 Drivers

▪ Complexity – only clients know about servers

▪ Heterogenous network

 Benefits

▪ Portability (of clients)

▪ Scalability

▪ Evolvability (of clients)

 Stateless
 Doesn’t mean there is no session – it is on client
 Drivers

▪ Network reliability
▪ Network topology
▪ Complexity
▪ Administration

 Benefits
▪ Visibility
▪ Reliability

▪ If server fail, client can just ask again or react appropriately
▪ There is no need to repeat whole transaction

▪ Scalability
▪ much easier to add more servers and implement load balancers

 Cacheable
 Answers from server must be marked as cacheable or

not

 Drivers
▪ Latency

▪ Bandwidth

▪ Transport cost

 Benefits
▪ Efficiency

▪ Scalability

▪ Performance

 Uniform Interface
 Elements:

▪ Identification of resources
▪ Manipulation through representations
▪ Self-descriptive messages
▪ HATEOAS (hypermedia as the engine of application state)

 Drivers
▪ Network reliability
▪ Network topology
▪ Administration
▪ Heterogenous network
▪ Complexity

 Benefits
▪ Visibility
▪ Evolvability

 Layered system
 Client can’t assume direct connection with server

 Drivers
▪ Network topology (we don’t care about topology, maybe

cache components are involved)

▪ Complexity (complexity can be hidden)

▪ Security (additional components can be added to increase
security in trust boundary)

 Benefits
▪ Scale

▪ Manageability

 Code on Demand
 Allows to download implemented features

 Optional constraint

 Pros
▪ You got ready stuff

▪ Client is simplified
▪ E.g. federation using OpenID Connect (with form to AuthN)

 Cons
▪ Visibility

▪ Security

 Main constituents

 Resource

▪ Resource identifier

▪ Resource metadata

 Representation

▪ Representation Metadata

 Control Data

 Hypermedia

▪ Hypermedia control

 Resource

 A concept related to entity

 Should be stable during the time

 Example

▪ Entity: Order

▪ Resources
▪ Orders

▪ DelayedOrders

▪ ApprovedOrders

▪ OrderOwners

 Resource identifier

 Allows to access resources

 Uniquely identify resources

 Examples

▪ http://ex.com/orders

▪ http://ex.com/orders/delayed

▪ http://ex.com/orders/approved

▪ http://ex.com/orders/owners

 Resource metadata

 In HTTP information attached with HTTP headers

 Identifier is in the Location header

 ETag state in time, helpful in

▪ caching or

▪ optimistic concurrency scenarios

 Representation
 Resource state at point in time

 Resource may have a few representations

 Representation Metadata describes representation
▪ Helps client and server with understanding how to process

data (structure, meaning)

 Content negotiation is a process of selecting the
representation
▪ Accept (e.g. application/json, but also image/png)

▪ Accept-Encoding

▪ Accept-Language

▪ Accept-Charset

 Control Data

 Change the default behaviour of a client or server

▪ … or intermediate components (e.g. proxies)

 Expressed in

▪ status codes (very important!)

▪ headers
▪ if-none-match

▪ cache-control

▪ …

 Common interpretation of HTTP methods

 GET – retrieve

 POST – create

 PUT – update

 DELETE – delete

(but it doesn’t mean you can’t create item by PUT)

 Hypermedia
 Drives decoupling between client and server

▪ client doesn’t need to know about the whole structure

 Client should get only entry point and navigate through
resolved associated entries (news feed)

 Media types decribe type of content
▪ Register page: https://www.iana.org/form/media-types
▪ Interesting media type: HAL (http://stateless.co/hal_specification.html)

 Hypermedia control
 <a href="http://localhost/orders/delayed"

rel="delayedOrders">Delayed Orders
 <form class="newOrder" action="orders" method="post">

…
</form>

https://www.iana.org/form/media-types
http://stateless.co/hal_specification.html

 Types of hypermedia

Line type Example

Embedded HTML

Outbound HTML <a>

Templated HTML form with method GET

Idempotent HTML form with method PUT

Non-idempotent HTML form with method POST

 Description
 We still need to understand resources,

representations, media types, etc.

 There are description standards, but should be used
differently than WSDL

 Some proposals
▪ Swagger
▪ http://swagger.io/

▪ WADL
▪ http://www.w3.org/Submission/wadl/

▪ XRD
▪ http://docs.oasis-open.org/xri/xrd/v1.0/xrd-1.0.html

http://swagger.io/
http://www.w3.org/Submission/wadl/
http://docs.oasis-open.org/xri/xrd/v1.0/xrd-1.0.html

RPC REST

Contract is made by service and operations
getUser(), addUser(), getAddress()

Contract is Uniform Interface (UI)

Actions meaning come from specification Actions meaning come from all constituents
(UI, state transitions, etc.)

Errors meaning are part of specification Errors meaning come from UI

Limited cache support Caching is built into the REST design

Client and server own the URL namespace Only server owns the URL namespace

Input and outputs come from runtime types Input and outputs come from media type
specification

Can be tranported by any protocol
HTTP, MSMQ, TCP, etc.

Tightly connect with UI related protocol
(usually HTTP)

 Level 0: POX (plain old XML)
 Level 1: Resources
 Level 2: HTTP Verbs
 Level 3: Hypermedia

 Only Level 3 means that a RESTful service

 Client shouldn’t assume any URL structure

 Totally different approach than in RPC SOAP WS

 The whole interactions should be based on
hypermedia

 The only known URL is an entry point

 Similarity to web browser

 SOAP+WS-*
 More capabilities based on WS-*

 More control, better in more complex interactions

 Many tools

 Cheaper in one-time
 REST

 A lot of advantages discussed so far

 Many cloud providers offer REST API (Amazon, Yahoo, …)

 Less capabilities, less tools

 Cheaper in run-time

 RESTful services
http://en.wikipedia.org/wiki/Representational_state_transfer
http://www.restapitutorial.com/lessons/whatisrest.html
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
https://www.thoughtworks.com/insights/blog/rest-api-design-resource-modeling
http://restcookbook.com/
http://whatisrest.com/
http://www.infoq.com/articles/roy-fielding-on-versioning

http://msdn.microsoft.com/en-us/magazine/dd315413.aspx
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

 WADL
https://wadl.java.net/
http://www.w3.org/Submission/wadl/
http://en.wikipedia.org/wiki/Web_Application_Description_Language
http://stackoverflow.com/questions/2215646/difference-between-wsdl-2-0-wadl-xrd

http://en.wikipedia.org/wiki/Representational_state_transfer
http://www.restapitutorial.com/lessons/whatisrest.html
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
https://www.thoughtworks.com/insights/blog/rest-api-design-resource-modeling
http://restcookbook.com/
http://whatisrest.com/
http://www.infoq.com/articles/roy-fielding-on-versioning
http://msdn.microsoft.com/en-us/magazine/dd315413.aspx
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://wadl.java.net/
http://www.w3.org/Submission/wadl/
http://en.wikipedia.org/wiki/Web_Application_Description_Language
http://stackoverflow.com/questions/2215646/difference-between-wsdl-2-0-wadl-xrd

