Pawet Rajba
pawel@cs.uni.wroc.pl
http://www.itcourses.eu/

CQRS

mailto:pawel@ii.uni.wroc.pl
http://www.kursy24.eu/

Motivations

The common approach

Nature of business applications

CQS and CQRS

Why to create separate models?
Implementations

A few more things about commands
Synchronization

Eventual consistency

Benefits

Motivations: Collaboration

Multiple actors want to operate on the same
data

Actor can be human or system
That implies concurrency problems with

locking the data
We can solve it on database level, we can

handle exceptions
... but maybe we can do it more effective?

Motivations: Retrieving data

In some cases, especially in collaboration, when you
show data to a user, the same data may have been
changed by another actor —it is stale

If so, why all the time retrieve it from the master
database?

Why perform all the conversions between normalized
structures and flat view model?

Why do not have a separate datastore dedicated to
queries? Maybe it could a different solution than a
relational database? Maybe cache?

Once we have such store, perhaps it would be easier
to add more instance and get ease scaling?

Finally, we can have a lot of and end up with...

Query of despair

INC S0 Kt e
: q=
P e e

A
A, e APY 0% b vy o

T
l_.ﬁ" L AND YTy 2
“ oy

.u OFPORS « 51 AND A pe_whvd NC S e v A
UL DR MC a2 caven ¢ [. 13 NALDH a
NG rC_fstan » OF AND OVC mG_geewers 15 NUAL OF NG A '..“?Mm.w." #O,

A5 W507_eenitign # © O NC o wigen geanriph (VL) AND VC 2o weinat « § 08
v _SeaTQf B NULLT AND (WE A gt » § 08 AC 22 guavumet S A0 MO '§~J-~IU-"‘1:~:‘:=-::: AR
verriesserLate 5 O NG ne_wrimaninmoete. ELvey e o § S W B o 38 K ot

~
:;ulso.ﬂlm_t-,n |‘lq,ﬂ':‘

CaACTO l‘m‘;’ e
i ”
RS S £ N

Motivations: Data modifications

A common approach is that we have an update
form to change a business object

Let’s assume that we have a bookstore and we
want to correct a responsible person for
specimen together with reserving the one

But in the meantime, someone else reserved the
specimen and in most common scenario we
reject all changes although changing person is
still valid

Why don’t make provide a right level of
granularity and allow changing the person?

The common approach

Domain Domain
Object Object

Application Services

Remote Facade

Send up DTO - Request DTO
DTO returned

Status returned

Client

The common approach

What is specific in that approach? If we focus a
specific bounded context, then we have...

One model for all types of operations

If we focus a specific part of Ul, then again we
have...

One model for all types of operations

Although in most cases it is ok, sometimes it
doesn't...

The common approach

From a flow perspective

Nature of business applications

Business requirements usually can be
represented by use cases
Uses cases can be generally split into:

Ones in which user want to data
Ones in which user want to and data

L et’s introduce some definitions...

CQS

First pattern which applies that observation is CQS
Command-Query Separation

It states that every method should either be a command that performs
an action, or a query that returns data to the caller, but not both. In
other words, asking a question should not change the answer.
(Wikipedia, CQS)

Godfather: Bertrand Meyer
To put it simply, it separates methods for

CQRS

CQRS: Command-Query Responsiblity
Segregation
How to put itin a shorter way?

CQRS is simply the creation of two objects
where there was previously only one

CQRS by Greg Young

Godfathers: GregYoung and Udi Dahan

Why to create separate models?

Command
Targets a single
Aggregate
Validation rules
Examples:

CreatePost,
AddComment,
SubmitOrder, LockUser

Optimization for
update

Query
Collapsing multiple
records into one
Forming virtual records
by combining
information for
different places
No validation needed
Optimization for
searching

Implementation

Different models
Only in presentation layer
Both in domain layer and then presentation layer
On database layer with 2 different databases
It depends on the scenario and WHY we need
CQRS
Vaugn remind to apply that segregation on

the repository level as well
Introducing a Command Handler (Agent) to

avoid problems with concurrency

Implementation

Another picture to see more details

Query

Synchronous - no messaging

E)aché
Update |

Publish

Command _ AC
N Write
Error Code / .
success ADomain Model

ormM

Creative Commons Altribution License - www.UdiDahan.com

A few more things about commands

What is command?
Actually is a request for change, a simple object
Sometimes we expect that commands should

be queued
Another thing is that command should be
able to process without quering for a data

But this is not only about models
—a new mindset is needed in creating Ul

Synchronization

Depending on implementation, we would
need synchronization.

If datastore is single —we need to decide if we
need synch models

If there are 2 datastores — definitely
synchronization is needed

Usually it is done by publishing events

However, an old/new term occurs in that
context...

Eventual consistency

An oposite to the transactional consistency
It guaranties that model become consistent

... but not immediately.
So, what are the delayes?

It depends: seconds, minutes, days...
Very often encountered in aggregates
considerations, but...

Can be found in other considerations, e.g. databases
What if something go wrong?

Well, then sometimes we may have a big problem

Eventual consistency

Now, we can apply that technique to models

Implementation: usually based on domain events

Benefits

If we have collaborative environment, we can
reduce concurrency problems by applying CQRS
If we want to cover both queries and
modifications, model may become quite
complicated. Separation following CQRS pattern
can reduce complexity.

If we expect high performance solution, then
separate models allows to apply different
optimizations’ strategies for every type of
operation

References

Article by Martin Fowler

http://martinfowler.com/bliki/CORS.html

Great introduction by Udi Dahan

http://www.udidahan.com/2009/12/oq/clarified-cqrs/

Good presentations

http://www.slideshare.net/jeppec/cqgrs-why-what-how
http://www.slideshare.net/brianritchiea/cgrs-command-query-responsibility-
segregation

Nice introduction

http://cqrs.nu/

http://martinfowler.com/bliki/CQRS.html
http://www.udidahan.com/2009/12/09/clarified-cqrs/
http://www.slideshare.net/jeppec/cqrs-why-what-how
http://www.slideshare.net/brianritchie1/cqrs-command-query-responsibility-segregation
http://cqrs.nu/

References

CQRS document by Greg Young

http://cqrs.files.wordpress.com/2010/11/cqrs documents.pdf

Article by Microsoft

http://msdn.microsoft.com/en-us/library/dn568103.aspx

DDD/CQRS sample application

http://carssample.codeplex.com/

REST APl and CQRS

http://www.infog.com/articles/rest-api-on-cqrs

http://cqrs.files.wordpress.com/2010/11/cqrs_documents.pdf
http://msdn.microsoft.com/en-us/library/dn568103.aspx
http://cqrssample.codeplex.com/
http://www.infoq.com/articles/rest-api-on-cqrs

