
Paweł Rajba
pawel@cs.uni.wroc.pl
http://www.itcourses.eu/

mailto:pawel@ii.uni.wroc.pl
http://www.kursy24.eu/


 Motivations
 The common approach
 Nature of business applications
 CQS and CQRS
 Why to create separate models?
 Implementations
 A few more things about commands
 Synchronization
 Eventual consistency
 Benefits



 Multiple actors want to operate on the same 
data

 Actor can be human or system

 That implies concurrency problems with 
locking the data

 We can solve it on database level, we can 
handle exceptions

 … but maybe we can do it more effective?



 In some cases, especially in collaboration, when you 
show data to a user, the same data may have been 
changed by another actor – it is stale

 If so, why all the time retrieve it from the master 
database?

 Why perform all the conversions between normalized 
structures and flat view model?

 Why do not have a separate datastore dedicated to 
queries? Maybe it could a different solution than a 
relational database? Maybe cache?

 Once we have such store, perhaps it would be easier 
to add more instance and get ease scaling?

 Finally, we can have a lot of and end up with…





 A common approach is that we have an update 
form to change a business object

 Let’s assume that we have a bookstore and we 
want to correct a responsible person for 
specimen together with reserving the one

 But in the meantime, someone else reserved the 
specimen and in most common scenario we 
reject all changes although changing person is 
still valid

 Why don’t make provide a right level of 
granularity and allow changing the person?





 What is specific in that approach? If we focus a 
specific bounded context, then we have…

One model for all types of operations

 If we focus a specific part of UI, then again we 
have…

One model for all types of operations

 Although in most cases it is ok, sometimes it
doesn’t…



 From a flow perspective



 Business requirements usually can be 
represented by use cases

 Uses cases can be generally split into:

 Ones in which user want to modify data

 Ones in which user want to search and read data



Let’s introduce some definitions…





 First pattern which applies that observation is CQS
Command-Query Separation

It states that every method should either be a command that performs 
an action, or a query that returns data to the caller, but not both. In 
other words, asking a question should not change the answer. 
(Wikipedia, CQS)

 Godfather: Bertrand Meyer
 To put it simply, it separates methods for

Commands Queries





 CQRS: Command-Query Responsiblity
Segregation

 How to put it in a shorter way?

CQRS is simply the creation of two objects
where there was previously only one

CQRS by Greg Young

 Godfathers: Greg Young and Udi Dahan





Command
 Targets a single 

Aggregate
 Validation rules
 Examples:

 CreatePost, 
AddComment, 
SubmitOrder, LockUser

 Optimization for 
update

Query
 Collapsing multiple 

records into one
 Forming virtual records 

by combining 
information for 
different places

 No validation needed
 Optimization for 

searching



 Different models
 Only in presentation layer

 Both in domain layer and then presentation layer

 On database layer with 2 different databases
 It depends on the scenario and WHY we need

CQRS
 Vaugn remind to apply that segregation on 

the repository level as well
 Introducing a Command Handler (Agent) to 

avoid problems with concurrency



 Another picture to see more details



 What is command?

 Actually is a request for change, a simple object

 Sometimes we expect that commands should
be queued

 Another thing is that command should be 
able to process without quering for a data

But this is not only about models
– a new mindset is needed in creating UI



 Depending on implementation, we would
need synchronization.
 If datastore is single – we need to decide if we 

need synch models

 If there are 2 datastores – definitely
synchronization is needed

 Usually it is done by publishing events

 However, an old/new term occurs in that
context…



 An oposite to the transactional consistency
 It guaranties that model become consistent

at some point in time…

… but not immediately.
 So, what are the delayes?

 It depends: seconds, minutes, days…
 Very often encountered in aggregates

considerations, but…
 Can be found in other considerations, e.g. databases

 What if something go wrong?
 Well, then sometimes we may have a big problem



Now, we can apply that technique to models

Implementation: usually based on domain events



 If we have collaborative environment, we can
reduce concurrency problems by applying CQRS

 If we want to cover both queries and 
modifications, model may become quite 
complicated. Separation following CQRS pattern 
can reduce complexity.

 If we expect high performance solution, then 
separate models allows to apply different 
optimizations’ strategies for every type of 
operation



 Article by Martin Fowler
http://martinfowler.com/bliki/CQRS.html

 Great introduction by Udi Dahan
http://www.udidahan.com/2009/12/09/clarified-cqrs/

 Good presentations
http://www.slideshare.net/jeppec/cqrs-why-what-how
http://www.slideshare.net/brianritchie1/cqrs-command-query-responsibility-
segregation

 Nice introduction
http://cqrs.nu/

http://martinfowler.com/bliki/CQRS.html
http://www.udidahan.com/2009/12/09/clarified-cqrs/
http://www.slideshare.net/jeppec/cqrs-why-what-how
http://www.slideshare.net/brianritchie1/cqrs-command-query-responsibility-segregation
http://cqrs.nu/


 CQRS document by Greg Young
http://cqrs.files.wordpress.com/2010/11/cqrs_documents.pdf

 Article by Microsoft
http://msdn.microsoft.com/en-us/library/dn568103.aspx

 DDD/CQRS sample application
http://cqrssample.codeplex.com/

 REST API and CQRS
http://www.infoq.com/articles/rest-api-on-cqrs

http://cqrs.files.wordpress.com/2010/11/cqrs_documents.pdf
http://msdn.microsoft.com/en-us/library/dn568103.aspx
http://cqrssample.codeplex.com/
http://www.infoq.com/articles/rest-api-on-cqrs

