
Paweł Rajba
pawel@cs.uni.wroc.pl
http://www.itcourses.eu/

mailto:pawel@ii.uni.wroc.pl
http://www.kursy24.eu/


 Motivations
 The common approach
 Nature of business applications
 CQS and CQRS
 Why to create separate models?
 Implementations
 A few more things about commands
 Synchronization
 Eventual consistency
 Benefits



 Multiple actors want to operate on the same 
data

 Actor can be human or system

 That implies concurrency problems with 
locking the data

 We can solve it on database level, we can 
handle exceptions

 … but maybe we can do it more effective?



 In some cases, especially in collaboration, when you 
show data to a user, the same data may have been 
changed by another actor – it is stale

 If so, why all the time retrieve it from the master 
database?

 Why perform all the conversions between normalized 
structures and flat view model?

 Why do not have a separate datastore dedicated to 
queries? Maybe it could a different solution than a 
relational database? Maybe cache?

 Once we have such store, perhaps it would be easier 
to add more instance and get ease scaling?

 Finally, we can have a lot of and end up with…





 A common approach is that we have an update 
form to change a business object

 Let’s assume that we have a bookstore and we 
want to correct a responsible person for 
specimen together with reserving the one

 But in the meantime, someone else reserved the 
specimen and in most common scenario we 
reject all changes although changing person is 
still valid

 Why don’t make provide a right level of 
granularity and allow changing the person?





 What is specific in that approach? If we focus a 
specific bounded context, then we have…

One model for all types of operations

 If we focus a specific part of UI, then again we 
have…

One model for all types of operations

 Although in most cases it is ok, sometimes it
doesn’t…



 From a flow perspective



 Business requirements usually can be 
represented by use cases

 Uses cases can be generally split into:

 Ones in which user want to modify data

 Ones in which user want to search and read data



Let’s introduce some definitions…





 First pattern which applies that observation is CQS
Command-Query Separation

It states that every method should either be a command that performs 
an action, or a query that returns data to the caller, but not both. In 
other words, asking a question should not change the answer. 
(Wikipedia, CQS)

 Godfather: Bertrand Meyer
 To put it simply, it separates methods for

Commands Queries





 CQRS: Command-Query Responsiblity
Segregation

 How to put it in a shorter way?

CQRS is simply the creation of two objects
where there was previously only one

CQRS by Greg Young

 Godfathers: Greg Young and Udi Dahan





Command
 Targets a single 

Aggregate
 Validation rules
 Examples:

 CreatePost, 
AddComment, 
SubmitOrder, LockUser

 Optimization for 
update

Query
 Collapsing multiple 

records into one
 Forming virtual records 

by combining 
information for 
different places

 No validation needed
 Optimization for 

searching



 Different models
 Only in presentation layer

 Both in domain layer and then presentation layer

 On database layer with 2 different databases
 It depends on the scenario and WHY we need

CQRS
 Vaugn remind to apply that segregation on 

the repository level as well
 Introducing a Command Handler (Agent) to 

avoid problems with concurrency



 Another picture to see more details



 What is command?

 Actually is a request for change, a simple object

 Sometimes we expect that commands should
be queued

 Another thing is that command should be 
able to process without quering for a data

But this is not only about models
– a new mindset is needed in creating UI



 Depending on implementation, we would
need synchronization.
 If datastore is single – we need to decide if we 

need synch models

 If there are 2 datastores – definitely
synchronization is needed

 Usually it is done by publishing events

 However, an old/new term occurs in that
context…



 An oposite to the transactional consistency
 It guaranties that model become consistent

at some point in time…

… but not immediately.
 So, what are the delayes?

 It depends: seconds, minutes, days…
 Very often encountered in aggregates

considerations, but…
 Can be found in other considerations, e.g. databases

 What if something go wrong?
 Well, then sometimes we may have a big problem



Now, we can apply that technique to models

Implementation: usually based on domain events



 If we have collaborative environment, we can
reduce concurrency problems by applying CQRS

 If we want to cover both queries and 
modifications, model may become quite 
complicated. Separation following CQRS pattern 
can reduce complexity.

 If we expect high performance solution, then 
separate models allows to apply different 
optimizations’ strategies for every type of 
operation



 Article by Martin Fowler
http://martinfowler.com/bliki/CQRS.html

 Great introduction by Udi Dahan
http://www.udidahan.com/2009/12/09/clarified-cqrs/

 Good presentations
http://www.slideshare.net/jeppec/cqrs-why-what-how
http://www.slideshare.net/brianritchie1/cqrs-command-query-responsibility-
segregation

 Nice introduction
http://cqrs.nu/

http://martinfowler.com/bliki/CQRS.html
http://www.udidahan.com/2009/12/09/clarified-cqrs/
http://www.slideshare.net/jeppec/cqrs-why-what-how
http://www.slideshare.net/brianritchie1/cqrs-command-query-responsibility-segregation
http://cqrs.nu/


 CQRS document by Greg Young
http://cqrs.files.wordpress.com/2010/11/cqrs_documents.pdf

 Article by Microsoft
http://msdn.microsoft.com/en-us/library/dn568103.aspx

 DDD/CQRS sample application
http://cqrssample.codeplex.com/

 REST API and CQRS
http://www.infoq.com/articles/rest-api-on-cqrs

http://cqrs.files.wordpress.com/2010/11/cqrs_documents.pdf
http://msdn.microsoft.com/en-us/library/dn568103.aspx
http://cqrssample.codeplex.com/
http://www.infoq.com/articles/rest-api-on-cqrs

