
Paweł Rajba
pawel@cs.uni.wroc.pl
http://www.itcourses.eu/

mailto:pawel@ii.uni.wroc.pl
http://www.kursy24.eu/

 Introduction
 Drivers for REST
 Properties of REST
 Common wrong assumptions
 REST constraints
 Uniform Interface
 RPC vs. REST
 Maturity Model
 Client
 Is always REST the best?

 Issues with SOAP web services

▪ Tight coupling between client and server

▪ When changing server API, all clients need to be
rebuild and tested

▪ No support for mobile clients

▪ Many complicated specifications very often
supported only partly by libraries

 Next level of web services: REST

 Interoperability
▪ Network based API vs. library based API

▪ Many services in the web
 Devices

▪ phones, tablets, laptops, cars, fridges benefits
from different services

 Scalability
▪ architecture should allow to benefit from

infrastructure scalability, e.g. benefit from cloud
like Azure or Amazon

 Heterogeny
 Scalability
 Evolvability (of clients)
 Visibility
 Reliability
 Efficiency
 Performance
 Manageability

 REST is not

▪ RPC (with SOAP and WSDL)

▪ HTTP (not every HTTP API is RESTful)

▪ URIs (cool URLs don’t make REST)

 REST is an architectural style

▪ Representational State Transfer (state machine)

▪ Roy Fielding and year 2000

 Network liability
▪ always there are problems, even in big cloud providers

 Latency
▪ there is always one, in distributed systems even bigger

 Bandwidth
▪ there is no infinite one, sometimes a cost is associated

 Security
▪ network is not secure

 Network topology
▪ is changing, client and servers are moving around,

especially in cloud environment, e.g. IP addresses, DNS
names, relative paths and URLS (e.g. in scaling)

 Administration
▪ usually there is no one administrator, system needs to be

created in a way of easy to administer and low learning
curve

 Transport cost
▪ is not zero, someone needs to pay for it (even it is hidden)

 Heterogeneous network
▪ nodes in the Web are different

 Complexity
▪ it could a problem that not everyone understands how to

use a service (understands semantic behind the methods,
data model)

 Client-Servers separation of concerns

▪ Drivers

▪ Complexity – only clients know about servers

▪ Heterogeneous network

▪ Benefits

▪ Portability (of clients)

▪ Scalability

▪ Evolvability (of clients)

 Stateless
▪ Doesn’t mean there is no session – it is on client
▪ Drivers

▪ Network reliability
▪ Network topology
▪ Complexity
▪ Administration

▪ Benefits
▪ Visibility
▪ Reliability

▪ If server fail, client can just ask again or react appropriately
▪ There is no need to repeat whole transaction

▪ Scalability
▪ much easier to add more servers and implement load balancers

 Cacheable

▪ Answers from server must be marked as cacheable or not

▪ Drivers

▪ Latency

▪ Bandwidth

▪ Transport cost

▪ Benefits

▪ Efficiency

▪ Scalability

▪ Performance

 Layered system
▪ Client can’t assume direct connection with server

▪ Drivers
▪ Network topology

▪ We don’t care about topology, maybe cache components are involved

▪ Complexity
▪ Complexity can be hidden

▪ Security
▪ Additional components can be added to increase security in trust boundary

▪ Benefits
▪ Scale

▪ Manageability

 Code on Demand
▪ Allows to download implemented features

▪ Optional constraint

▪ Pros
▪ You got ready stuff

▪ Client is simplified
▪ E.g. federation using OpenID Connect (with form to AuthN)

▪ Cons
▪ Visibility

▪ Security

 Uniform Interface
▪ Constraints:

▪ Identification of resources
▪ Manipulation through representations
▪ Self-descriptive messages (e.g. by adding media types information)
▪ HATEOAS (hypermedia as the engine of application state)

▪ Drivers
▪ Network reliability
▪ Network topology
▪ Administration
▪ Heterogenous network
▪ Complexity

▪ Benefits
▪ Visibility
▪ Evolvability

 Main constituents

▪ Resource

▪ Resource identifier

▪ Resource metadata

▪ Representation

▪ Representation Metadata

▪ Control Data

▪ Hypermedia (HATEOAS)

▪ Hypermedia control

 Resource
▪ A concept (expressed by a noun, no verbs)

▪ Mapped to entities

▪ Should be stable during the time

▪ Examples of resources
▪ Customers

▪ Customer orders

▪ Statuses of an customer’s order

▪ Courses in which a student is enrolled

▪ Blog post’s comments

 Read more
▪ http://mark-kirby.co.uk/2013/creating-a-true-rest-api/

▪ http://www.restapitutorial.com/lessons/restfulresourcenaming.html

▪ https://www.thoughtworks.com/insights/blog/rest-api-design-resource-modeling

http://mark-kirby.co.uk/2013/creating-a-true-rest-api/
http://www.restapitutorial.com/lessons/restfulresourcenaming.html
https://www.thoughtworks.com/insights/blog/rest-api-design-resource-modeling

 Resource identifier

▪ Allows to access resources

▪ Uniquely identify resources

▪ Examples

▪ http://ex.com/customers

▪ http://ex.com/customers/<id>/orders

▪ http://ex.com/customers/<cid>/orders/<oid>/status

 Resource metadata

▪ In HTTP information attached with HTTP headers

▪ Identifier is in the Location header

▪ ETag state in time, helpful in

▪ caching or

▪ optimistic concurrency scenarios

 Representation
▪ Resource state at point in time

▪ Resource may have a few representations

▪ Representation Metadata describes representation
▪ Helps client and server with understanding how to process

data (structure, meaning)

▪ Content negotiation is a process of selecting the
representation
▪ Accept (e.g. application/json, but also image/png)

▪ Accept-Encoding

▪ Accept-Language

▪ Accept-Charset

 Control Data

▪ Change the default behaviour of a client or server

▪ … or intermediate components (e.g. proxies)

▪ Expressed in

▪ status codes (very important!)

▪ headers
▪ if-none-match

▪ cache-control

▪ …

 Common interpretation of HTTP methods

▪ GET – retrieve

▪ POST – create

▪ PUT – full entity update

▪ PATCH – delta update

▪ DELETE – delete

 HTTP Status Codes
▪ Very important to use it

▪ Several most common ones
▪ 200 Ok

▪ 201 Created

▪ 204 No content

▪ 400 Bad request

▪ 401 Unauthorized

▪ 404 Not found

▪ More
▪ http://www.restapitutorial.com/httpstatuscodes.html

http://www.restapitutorial.com/httpstatuscodes.html

 Hypermedia
▪ Drives decoupling between client and server

▪ client doesn’t need to know about the whole structure

▪ Client should get only entry point and navigate through
resolved associated entries (news feed)

▪ HATEOAS
▪ Hypermedia As The Engine Of Application State

▪ Parameters
▪ rel – type of relationship
▪ href – URL which uniquely identifies a resource

▪ Media types decribe type of content
▪ Register page: https://www.iana.org/form/media-types
▪ Interesting media type: HAL (http://stateless.co/hal_specification.html)

https://www.iana.org/form/media-types
http://stateless.co/hal_specification.html

 Hypermedia control

▪ Based on HTML
▪ Delayed Orders

▪ <form class="newOrder" action="orders" method="post">

…

</form>

▪ Based on XML
▪ <?xml version="1.0"?>

<account>

<account_number>12345</account_number>

<balance currency="usd">100.00</balance>

<link rel="deposit" href="https://somebank.org/account/12345/deposit" />

<link rel="withdraw" href="https://somebank.org/account/12345/withdraw" />

<link rel="transfer" href="https://somebank.org/account/12345/transfer" />

<link rel="close" href="https://somebank.org/account/12345/close" />

</account>

https://en.wikipedia.org/wiki/HATEOAS

 Types of hypermedia

Line type Example

Embedded HTML

Outbound HTML <a>

Templated HTML form with method GET

Idempotent HTML form with method PUT

Non-idempotent HTML form with method POST

 Description
▪ We still need to understand resources,

representations, media types, etc.

▪ There are description standards, but should be used
differently than WSDL

▪ Some proposals
▪ Swagger
▪ http://swagger.io/

▪ WADL
▪ http://www.w3.org/Submission/wadl/

▪ XRD
▪ http://docs.oasis-open.org/xri/xrd/v1.0/xrd-1.0.html

http://swagger.io/
http://www.w3.org/Submission/wadl/
http://docs.oasis-open.org/xri/xrd/v1.0/xrd-1.0.html

RPC REST

Contract is made by service and operations
getUser(), addUser(), getAddress()

Contract is Uniform Interface (UI)

Actions meaning come from specification Actions meaning come from all constituents
(UI, state transitions, etc.)

Errors meaning are part of specification Errors meaning come from UI

Limited cache support Caching is built into the REST design

Client and server own the URL namespace Only server owns the URL namespace

Input and outputs come from runtime types Input and outputs come from media type
specification

Can be tranported by any protocol
HTTP, MSMQ, TCP, etc.

Tightly connect with UI related protocol
(usually HTTP)

 Level 0: POX (plain old XML)
 Level 1: Resources
 Level 2: HTTP Verbs
 Level 3: Hypermedia

 Only Level 3 means that a RESTful service

 Client shouldn’t assume any URL structure

▪ Totally different approach than in RPC SOAP WS

 The whole interactions should be based on
hypermedia

▪ The only known URL is an entry point

▪ Similarity to web browser

 SOAP+WS-*
▪ More capabilities based on WS-*

▪ More control, better in more complex interactions

▪ Many tools

▪ Cheaper in one-time
 REST

▪ A lot of advantages discussed so far

▪ Many cloud providers offer REST API (Amazon, Yahoo, …)

▪ Less capabilities, less tools

▪ Cheaper in run-time

 GMail API
▪ Main pages

▪ Strona główna
▪ https://developers.google.com/gmail/api/

▪ Wprowadzenie
▪ https://developers.google.com/gmail/api/guides/

▪ Dokumentacja
▪ https://developers.google.com/gmail/api/v1/reference/

▪ Steps
▪ List of messages

▪ https://developers.google.com/gmail/api/v1/reference/users/messages/list#try-it

▪ Selected message
▪ https://developers.google.com/gmail/api/v1/reference/users/messages/get#try-it

▪ List of lables
▪ https://developers.google.com/gmail/api/v1/reference/users/messages/list#try-it

▪ Create a new label
▪ https://developers.google.com/gmail/api/v1/reference/users/labels/create#try-it

▪ What’s wrong?

https://developers.google.com/gmail/api/
https://developers.google.com/gmail/api/guides/
https://developers.google.com/gmail/api/v1/reference/
https://developers.google.com/gmail/api/v1/reference/users/messages/list#try-it
https://developers.google.com/gmail/api/v1/reference/users/messages/get#try-it
https://developers.google.com/gmail/api/v1/reference/users/messages/list#try-it
https://developers.google.com/gmail/api/v1/reference/users/labels/create#try-it

 Google Tasks

▪ But this time we use interesting tool:

▪ https://apigee.com/console/google-tasks

https://apigee.com/console/google-tasks

 Examples of other services
▪ GitHub

▪ https://developer.github.com/v3/

▪ PayPal
▪ https://developer.paypal.com/docs/api/

▪ Twilio
▪ https://www.twilio.com/docs/api/rest

▪ Confluence
▪ https://docs.atlassian.com/confluence/REST/latest/

▪ Foxy
▪ https://api.foxycart.com/docs

https://developer.github.com/v3/
https://developer.paypal.com/docs/api/
https://www.twilio.com/docs/api/rest
https://docs.atlassian.com/confluence/REST/latest/
https://api.foxycart.com/docs

 Creating HTTP Api
▪ BooksApi

▪ Test with PostMan

▪ Status code in WebApi
▪ Custom status code: return StatusCode(404);
▪ 200: return Ok()
▪ 201: return Created()
▪ 204: return NoContent()
▪ 400: return BadRequest()
▪ 401: return Unauthorized()
▪ 404: return NotFound()

 Read more
▪ https://docs.microsoft.com/en-us/aspnet/core/tutorials/first-web-api

https://docs.microsoft.com/en-us/aspnet/core/tutorials/first-web-api

 Investigate

▪ Swagger
▪ http://swagger.io/

▪ https://docs.microsoft.com/en-us/aspnet/core/tutorials/web-api-help-pages-using-swagger

▪ OData
▪ http://www.odata.org/

http://swagger.io/
https://docs.microsoft.com/en-us/aspnet/core/tutorials/web-api-help-pages-using-swagger
http://www.odata.org/

 RESTful services
http://en.wikipedia.org/wiki/Representational_state_transfer
https://spring.io/understanding/HATEOAS
https://en.wikipedia.org/wiki/HATEOAS
http://www.restapitutorial.com/lessons/whatisrest.html
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
https://www.thoughtworks.com/insights/blog/rest-api-design-resource-modeling
http://restcookbook.com/
http://whatisrest.com/
http://www.infoq.com/articles/roy-fielding-on-versioning

http://msdn.microsoft.com/en-us/magazine/dd315413.aspx
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://blog.steveklabnik.com/posts/2011-07-03-nobody-understands-rest-or-http

 WADL
https://wadl.java.net/
http://www.w3.org/Submission/wadl/
http://en.wikipedia.org/wiki/Web_Application_Description_Language
http://stackoverflow.com/questions/2215646/difference-between-wsdl-2-0-wadl-xrd

http://en.wikipedia.org/wiki/Representational_state_transfer
https://spring.io/understanding/HATEOAS
https://en.wikipedia.org/wiki/HATEOAS
http://www.restapitutorial.com/lessons/whatisrest.html
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
https://www.thoughtworks.com/insights/blog/rest-api-design-resource-modeling
http://restcookbook.com/
http://whatisrest.com/
http://www.infoq.com/articles/roy-fielding-on-versioning
http://msdn.microsoft.com/en-us/magazine/dd315413.aspx
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://blog.steveklabnik.com/posts/2011-07-03-nobody-understands-rest-or-http
https://wadl.java.net/
http://www.w3.org/Submission/wadl/
http://en.wikipedia.org/wiki/Web_Application_Description_Language
http://stackoverflow.com/questions/2215646/difference-between-wsdl-2-0-wadl-xrd

