
Paweł Rajba
pawel@cs.uni.wroc.pl
http://www.itcourses.eu/

mailto:pawel@ii.uni.wroc.pl
http://www.kursy24.eu/


 CQRS
▪ A common approach
▪ Nature of business applications
▪ CQS and CQRS
▪ Why to create separate models?
▪ A few more things about commands
▪ Levels of segregation
▪ Database synchronization
▪ Eventual consistency
▪ Consideration
▪ Benefits

 Event sourcing



CQRS



 What is specific in that approach? If we focus a 
specific bounded context, then we have…

One model for all types of operations

 If we focus a specific part of UI, then again we 
have…

One model for all types of operations

 Although in most cases it is ok, sometimes it
doesn’t…



 From a flow perspective





 Business requirements usually can be 
represented by use cases

 Uses cases can be generally split into:

▪ Ones in which user want to modify data

▪ Ones in which user want to search and read data



Let’s introduce some definitions…





 First pattern which applies that observation is CQS
Command-Query Separation

It states that every method should either be a command that performs 
an action, or a query that returns data to the caller, but not both. In 
other words, asking a question should not change the answer. 
(Wikipedia, CQS)

 Godfather: Bertrand Meyer
 To put it simply, it separates methods for

Commands Queries





 CQRS: Command-Query Responsiblity
Segregation

 How to put it in a shorter way?

CQRS is simply the creation of two objects
where there was previously only one

CQRS by Greg Young

 Godfathers: Greg Young and Udi Dahan





Presentation Layer

Application Layer

Domain Layer

Infrastructure Layer

DTO

Commands Queries



Command
 Targets a single 

Aggregate
 Validation rules
 Examples:

▪ CreatePost, 
AddComment, 
SubmitOrder, LockUser

 Optimized for update

Query
 Collapsing multiple 

records into one
 Forming virtual records 

by combining 
information for 
different places

 No validation needed
 Optimized for search



 What is command?

▪ Actually is a request for change, a simple object

 Sometimes we expect that commands should
be queued

 Another thing is that command should be 
able to process without quering for a data

But this is not only about models
– a new mindset is needed in creating UI



Presentation Layer

Application Layer

Command Model Query Model

Database

 Model segregation



 Model & database segregation

Presentation Layer

Application Layer

Command Model Query Model

Log Database Read Database
Update



Type Consistency Delay

Synchronous Transactional N/A

Asynchronous Eventual Short

Scheduled Eventual Long

On-demand Eventual Depends on event



 An oposite to the transactional consistency
 It guaranties that model become consistent

at some point in time…

… but not immediately.
 So, what are the delayes?

▪ It depends: seconds, minutes, days…
 Very often encountered in aggregates

considerations, but…
▪ Can be found in other considerations, e.g. databases

 What if something go wrong?
▪ Well, then sometimes we may have a big problem



 Decision on seperation depends on the scenario
and on WHY we need CQRS

 Example for 2 DBs
▪ Write DB: Visits on a web site
▪ Read DB: Aggregated statistics

 Synchronization between databases is usually
based on events

 To avoid problems with concurrency
as a part of architecture we can introduce
▪ Command Handler/Bus
▪ Event Bus



 Different optimization strategies for 
command and queries

 Scalability
 In a collaborative environment, we can reduce

concurrency problems by applying CQRS



Event Sourcing



 The way of thinking…
▪ When you meet someone, most likely you are going

to describe last 1 month by events, not by a state you
are now

 Losing important knowledge
▪ By design you assume what it is going to be kept
▪ So, if you miss something in a design, you can’t

recover that
▪ Having events allows you to conclude anything from 

the history

Events vs. Models



 Event describe something that happened in 
past
▪ So, they are immutable

▪ We can only append events, no delete, no update

▪ E.g. order created, status changed
 Event sourcing

▪ …is a way of persisting your application's state by 
storing the history that determines the current 
state of your application.

▪ In short: Events as a Data Store



 Mindset change

Persisting Domain
Model

Logging Events



 Keep the current state
 Log events as a history

Concept familiar from 
the database world

 Keep events
 Build knowledge by 

reviewing relevant events

How to store data?



 Let’s consider the following sequence of 
events
1. Shopping Cart Created (ID=1)

2. Item (ID=22) Added to Cart (ID=1)

3. Item (ID=53) Added to Cart (ID=1)

4. Item (ID=22) Removed from Cart (ID=1)

5. Shopping Cart (ID=1) Checked-Out
 As we can observe, every event relates to 

some data, specifically entityID (Cart ID)



 Quering is based on replaying events
▪ Get all events related to a specific aggregate (EntityID) 

by the method GetEventStream(ID)

▪ Apply all events to the agregate instance

▪ In the end, we get the current state
 We can replay for other reasons, e.g.

▪ Statistical

▪ Executing business rules (e.g. if an item is in the card, so
you can remove the item)

 Events can be replicated for the scalability
▪ They are immutable, so we can do that easily



 Log of events can only grow and reviewing all
of them every time may affect performance

 To address that we can create a snapshot

▪ Which serialize the state of aggregate at some
point in time

▪ A snapshot is (of course) attached to the event 
stream

 Afterwards, you replay the events from the 
snapshot, not from the beginning



 To speed up, you can cache the results

▪ A set of tables where the state is based on events

▪ The structure reflects the current business need

▪ If the need is changed, it can be reflected in the structure

https://dev.to/barryosull/event-sourcing-what-it-is-and-why-its-awesome



 Now it is easy to the connection to CQRS 
when we have a model & database separation

Commands Queries

Event stream Replying events



 Article by Martin Fowler
http://martinfowler.com/bliki/CQRS.html

 Great introduction by Udi Dahan
http://www.udidahan.com/2009/12/09/clarified-cqrs/

 Good presentations
http://www.slideshare.net/jeppec/cqrs-why-what-how
http://www.slideshare.net/brianritchie1/cqrs-command-query-responsibility-
segregation

 Nice introduction
http://cqrs.nu/

http://martinfowler.com/bliki/CQRS.html
http://www.udidahan.com/2009/12/09/clarified-cqrs/
http://www.slideshare.net/jeppec/cqrs-why-what-how
http://www.slideshare.net/brianritchie1/cqrs-command-query-responsibility-segregation
http://cqrs.nu/


 CQRS document by Greg Young
http://cqrs.files.wordpress.com/2010/11/cqrs_documents.pdf

 Article by Microsoft
http://msdn.microsoft.com/en-us/library/dn568103.aspx

 DDD/CQRS sample application
http://cqrssample.codeplex.com/

 REST API and CQRS
http://www.infoq.com/articles/rest-api-on-cqrs

http://cqrs.files.wordpress.com/2010/11/cqrs_documents.pdf
http://msdn.microsoft.com/en-us/library/dn568103.aspx
http://cqrssample.codeplex.com/
http://www.infoq.com/articles/rest-api-on-cqrs


 Event sourcing
▪ https://dev.to/barryosull/event-sourcing-what-it-is-and-why-its-awesome

▪ https://docs.microsoft.com/en-us/previous-versions/msp-n-p/jj591559(v=pandp.10)

▪ https://martinfowler.com/eaaDev/EventSourcing.html

▪ http://cqrs.wikidot.com/doc:event-sourcing

▪ https://bulldogjob.pl/articles/122-cqrs-i-event-sourcing-czyli-latwa-droga-do-
skalowalnosci-naszych-systemow_

https://dev.to/barryosull/event-sourcing-what-it-is-and-why-its-awesome
https://docs.microsoft.com/en-us/previous-versions/msp-n-p/jj591559(v=pandp.10)
https://martinfowler.com/eaaDev/EventSourcing.html
http://cqrs.wikidot.com/doc:event-sourcing
https://bulldogjob.pl/articles/122-cqrs-i-event-sourcing-czyli-latwa-droga-do-skalowalnosci-naszych-systemow_

