
Paweł Rajba
pawel@cs.uni.wroc.pl
http://www.itcourses.eu/

mailto:pawel@ii.uni.wroc.pl
http://www.kursy24.eu/


 CQRS
▪ A common approach
▪ Nature of business applications
▪ CQS and CQRS
▪ Why to create separate models?
▪ A few more things about commands
▪ Levels of segregation
▪ Database synchronization
▪ Eventual consistency
▪ Consideration
▪ Benefits

 Event sourcing



CQRS



 What is specific in that approach? If we focus a 
specific bounded context, then we have…

One model for all types of operations

 If we focus a specific part of UI, then again we 
have…

One model for all types of operations

 Although in most cases it is ok, sometimes it
doesn’t…



 From a flow perspective





 Business requirements usually can be 
represented by use cases

 Uses cases can be generally split into:

▪ Ones in which user want to modify data

▪ Ones in which user want to search and read data



Let’s introduce some definitions…





 First pattern which applies that observation is CQS
Command-Query Separation

It states that every method should either be a command that performs 
an action, or a query that returns data to the caller, but not both. In 
other words, asking a question should not change the answer. 
(Wikipedia, CQS)

 Godfather: Bertrand Meyer
 To put it simply, it separates methods for

Commands Queries





 CQRS: Command-Query Responsiblity
Segregation

 How to put it in a shorter way?

CQRS is simply the creation of two objects
where there was previously only one

CQRS by Greg Young

 Godfathers: Greg Young and Udi Dahan





Presentation Layer

Application Layer

Domain Layer

Infrastructure Layer

DTO

Commands Queries



Command
 Targets a single 

Aggregate
 Validation rules
 Examples:

▪ CreatePost, 
AddComment, 
SubmitOrder, LockUser

 Optimized for update

Query
 Collapsing multiple 

records into one
 Forming virtual records 

by combining 
information for 
different places

 No validation needed
 Optimized for search



 What is command?

▪ Actually is a request for change, a simple object

 Sometimes we expect that commands should
be queued

 Another thing is that command should be 
able to process without quering for a data

But this is not only about models
– a new mindset is needed in creating UI



Presentation Layer

Application Layer

Command Model Query Model

Database

 Model segregation



 Model & database segregation

Presentation Layer

Application Layer

Command Model Query Model

Log Database Read Database
Update



Type Consistency Delay

Synchronous Transactional N/A

Asynchronous Eventual Short

Scheduled Eventual Long

On-demand Eventual Depends on event



 An oposite to the transactional consistency
 It guaranties that model become consistent

at some point in time…

… but not immediately.
 So, what are the delayes?

▪ It depends: seconds, minutes, days…
 Very often encountered in aggregates

considerations, but…
▪ Can be found in other considerations, e.g. databases

 What if something go wrong?
▪ Well, then sometimes we may have a big problem



 Decision on seperation depends on the scenario
and on WHY we need CQRS

 Example for 2 DBs
▪ Write DB: Visits on a web site
▪ Read DB: Aggregated statistics

 Synchronization between databases is usually
based on events

 To avoid problems with concurrency
as a part of architecture we can introduce
▪ Command Handler/Bus
▪ Event Bus



 Different optimization strategies for 
command and queries

 Scalability
 In a collaborative environment, we can reduce

concurrency problems by applying CQRS



Event Sourcing



 The way of thinking…
▪ When you meet someone, most likely you are going

to describe last 1 month by events, not by a state you
are now

 Losing important knowledge
▪ By design you assume what it is going to be kept
▪ So, if you miss something in a design, you can’t

recover that
▪ Having events allows you to conclude anything from 

the history

Events vs. Models



 Event describe something that happened in 
past
▪ So, they are immutable

▪ We can only append events, no delete, no update

▪ E.g. order created, status changed
 Event sourcing

▪ …is a way of persisting your application's state by 
storing the history that determines the current 
state of your application.

▪ In short: Events as a Data Store



 Mindset change

Persisting Domain
Model

Logging Events



 Keep the current state
 Log events as a history

Concept familiar from 
the database world

 Keep events
 Build knowledge by 

reviewing relevant events

How to store data?



 Let’s consider the following sequence of 
events
1. Shopping Cart Created (ID=1)

2. Item (ID=22) Added to Cart (ID=1)

3. Item (ID=53) Added to Cart (ID=1)

4. Item (ID=22) Removed from Cart (ID=1)

5. Shopping Cart (ID=1) Checked-Out
 As we can observe, every event relates to 

some data, specifically entityID (Cart ID)



 Quering is based on replaying events
▪ Get all events related to a specific aggregate (EntityID) 

by the method GetEventStream(ID)

▪ Apply all events to the agregate instance

▪ In the end, we get the current state
 We can replay for other reasons, e.g.

▪ Statistical

▪ Executing business rules (e.g. if an item is in the card, so
you can remove the item)

 Events can be replicated for the scalability
▪ They are immutable, so we can do that easily



 Log of events can only grow and reviewing all
of them every time may affect performance

 To address that we can create a snapshot

▪ Which serialize the state of aggregate at some
point in time

▪ A snapshot is (of course) attached to the event 
stream

 Afterwards, you replay the events from the 
snapshot, not from the beginning



 To speed up, you can cache the results

▪ A set of tables where the state is based on events

▪ The structure reflects the current business need

▪ If the need is changed, it can be reflected in the structure

https://dev.to/barryosull/event-sourcing-what-it-is-and-why-its-awesome



 Now it is easy to the connection to CQRS 
when we have a model & database separation

Commands Queries

Event stream Replying events



 Article by Martin Fowler
http://martinfowler.com/bliki/CQRS.html

 Great introduction by Udi Dahan
http://www.udidahan.com/2009/12/09/clarified-cqrs/

 Good presentations
http://www.slideshare.net/jeppec/cqrs-why-what-how
http://www.slideshare.net/brianritchie1/cqrs-command-query-responsibility-
segregation

 Nice introduction
http://cqrs.nu/

http://martinfowler.com/bliki/CQRS.html
http://www.udidahan.com/2009/12/09/clarified-cqrs/
http://www.slideshare.net/jeppec/cqrs-why-what-how
http://www.slideshare.net/brianritchie1/cqrs-command-query-responsibility-segregation
http://cqrs.nu/


 CQRS document by Greg Young
http://cqrs.files.wordpress.com/2010/11/cqrs_documents.pdf

 Article by Microsoft
http://msdn.microsoft.com/en-us/library/dn568103.aspx

 DDD/CQRS sample application
http://cqrssample.codeplex.com/

 REST API and CQRS
http://www.infoq.com/articles/rest-api-on-cqrs

http://cqrs.files.wordpress.com/2010/11/cqrs_documents.pdf
http://msdn.microsoft.com/en-us/library/dn568103.aspx
http://cqrssample.codeplex.com/
http://www.infoq.com/articles/rest-api-on-cqrs


 Event sourcing
▪ https://dev.to/barryosull/event-sourcing-what-it-is-and-why-its-awesome

▪ https://docs.microsoft.com/en-us/previous-versions/msp-n-p/jj591559(v=pandp.10)

▪ https://martinfowler.com/eaaDev/EventSourcing.html

▪ http://cqrs.wikidot.com/doc:event-sourcing

▪ https://bulldogjob.pl/articles/122-cqrs-i-event-sourcing-czyli-latwa-droga-do-
skalowalnosci-naszych-systemow_

https://dev.to/barryosull/event-sourcing-what-it-is-and-why-its-awesome
https://docs.microsoft.com/en-us/previous-versions/msp-n-p/jj591559(v=pandp.10)
https://martinfowler.com/eaaDev/EventSourcing.html
http://cqrs.wikidot.com/doc:event-sourcing
https://bulldogjob.pl/articles/122-cqrs-i-event-sourcing-czyli-latwa-droga-do-skalowalnosci-naszych-systemow_

