Pawet Rajba
pawel@cs.uni.wroc.pl
http://www.itcourses.eu/

CQRS and Event Sourcing

mailto:pawel@ii.uni.wroc.pl
http://www.kursy24.eu/

Agenda

CQRS

A common approach

Nature of business applications

CQS and CQRS

Why to create separate models?

A few more things about commands
Levels of segregation

Database synchronization

Eventual consistency

Consideration

Benefits
Event sourcing

CQRS

A common approach

What is specific in that approach? If we focus a
specific bounded context, then we have...

One model for all types of operations

If we focus a specific part of Ul, then again we
have...

One model for all types of operations

Although in most cases it is ok, sometimes it
doesn't...

The common approach

From a flow perspective

Query of despair

INC S0 Kt e
: q=
P e e

A
A, e APY 0% b vy o

T
l_.ﬁ" L AND YTy 2
“ oy

.u OFPORS « 51 AND A pe_whvd NC S e v A
UL DR MC a2 caven ¢ [. 13 NALDH a
NG rC_fstan » OF AND OVC mG_geewers 15 NUAL OF NG A '..“?Mm.w." #O,

A5 W507_eenitign # © O NC o wigen geanriph (VL) AND VC 2o weinat « § 08
v _SeaTQf B NULLT AND (WE A gt » § 08 AC 22 guavumet S A0 MO '§~J-~IU-"‘1:~:‘:=-::: AR
verriesserLate 5 O NG ne_wrimaninmoete. ELvey e o § S W B o 38 K ot

~
:;ulso.ﬂlm_t-,n |‘lq,ﬂ':‘

CaACTO l‘m‘;’ e
i ”
RS S £ N

Nature of business applications

Business requirements usually can be
represented by use cases
Uses cases can be generally split into:

Ones in which user want to data
Ones in which user want to and data

L et’s introduce some definitions...

CQsS

First pattern which applies that observation is CQS
Command-Query Separation

It states that every method should either be a command that performs
an action, or a query that returns data to the caller, but not both. In
other words, asking a question should not change the answer.
(Wikipedia, CQS)

Godfather: Bertrand Meyer
To put it simply, it separates methods for

CQRS

CQRS: Command-Query Responsiblity
Segregation
How to put itin a shorter way?

CQRS is simply the creation of two objects
where there was previously only one

CQRS by Greg Young

Godfathers: GregYoung and Udi Dahan

CQRS flows

CQRS architecture

Presentation Layer

Why to create separate models?

Command
Targets a single
Aggregate
Validation rules
Examples:

CreatePost,
AddComment,
SubmitOrder, LockUser

Optimized for update

Query
Collapsing multiple
records into one
Forming virtual records
by combining
information for
different places
No validation needed
Optimized for search

A few more things about commands

What is command?
Actually is a request for change, a simple object
Sometimes we expect that commands should

be queued
Another thing is that command should be
able to process without quering for a data

But this is not only about models
—a new mindset is needed in creating Ul

Levels of segregation

Model segregation

Presentation Layer

l L]

Levels of segregation

Model & database segregation

\|JJ C J ay

l L]

Log Database Read Database

—
Update

Database synchronization

Synchronous Transactional N/A
Asynchronous Eventual Short
Scheduled Eventual Long

On-demand Eventual Depends on event

Eventual consistency

An oposite to the transactional consistency
It guaranties that model become consistent

... but not immediately.
So, what are the delayes?

It depends: seconds, minutes, days...
Very often encountered in aggregates
considerations, but...

Can be found in other considerations, e.g. databases
What if something go wrong?

Well, then sometimes we may have a big problem

Consideration

Decision on seperation depends on the scenario
and on WHY we need CQRS
Example for 2 DBs

Write DB: Visits on a web site

Read DB: Aggregated statistics
Synchronization between databases is usually
based on events
To avoid problems with concurrency
as a part of architecture we can introduce

Command Handler/Bus
Event Bus

Benefits

Different optimization strategies for
command and queries

Scalability
In a collaborative environment, we can reduce

concurrency problems by applying CQRS

Event Sourcing

Event Sourcing

The way of thinking...

When you meet someone, most likely you are going
to describe last 2 month by events, not by a state you
are now

Losing important knowledge
By design you assume what it is going to be kept

So, if you miss something in a design, you can't
recover that

Having events allows you to conclude anything from
the history

Events vs. Models

Event Sourcing

Event describe something that happened in
past

So, they are immutable
We can only append events, no delete, no update

E.g. order created, status changed
Event sourcing

...Is a way of persisting your application's state by
storing the history that determines the current
state of your application.

In short: Events as a Data Store

Event Sourcing

Mindset change

Event Sourcing

How to store data?

Keep the current state
Log events as a history Build knowledge by
" reviewing relevant events

Concept familiar from
the database world

Common example: shopping cart

Let’s consider the following sequence of
events
Shopping Cart Created (ID=1)
tem (ID=22) Added to Cart (ID=1)
tem (ID=53) Added to Cart (ID=1)
tem (ID=22) Removed from Cart (ID=1)

Shopping Cart (ID=1) Checked-Out
As we can observe, every event relates to
some data, specifically entitylD (Cart ID)

Showing data to a user

Quering is based on replaying events

Get all events related to a specific aggregate (EntityID)
by the method GetEventStream(ID)

Apply all events to the agregate instance

In the end, we get the current state
We can replay for other reasons, e.q.

Statistical

Executing business rules (e.g. if an itemis in the card, so
you can remove the item)

Events can be replicated for the scalability
They are immutable, so we can do that easily

Showing data to a user

Log of events can only grow and reviewing all
of them every time may affect performance
To address that we can create a snapshot

Which serialize the state of aggregate at some
point in time
A snapshot is (of course) attached to the event
stream

Afterwards, you replay the events from the

snapshot, not from the beginning

Showing data to a user

To speed up, you can cache the results
A set of tables where the state is based on events
The structure reflects the current business need

If the need is changed, it can be reflected in the structure

Event Log Projection

-
Played 1into
i -
-

ik
il

https://dev.to/barryosull/event-sourcing-what-it-is-and-why-its-awesome

Connection to CQRS

Now it is easy to the connection to CQRS
when we have a model & database separation

Queries

Commands

References

Article by Martin Fowler

http://martinfowler.com/bliki/CORS.html

Great introduction by Udi Dahan

http://www.udidahan.com/2009/12/oq/clarified-cqrs/

Good presentations

http://www.slideshare.net/jeppec/cqgrs-why-what-how
http://www.slideshare.net/brianritchiea/cqrs-command-query-responsibility-
segregation

Nice introduction

http://cqrs.nu/

http://martinfowler.com/bliki/CQRS.html
http://www.udidahan.com/2009/12/09/clarified-cqrs/
http://www.slideshare.net/jeppec/cqrs-why-what-how
http://www.slideshare.net/brianritchie1/cqrs-command-query-responsibility-segregation
http://cqrs.nu/

References

CQRS document by Greg Young

http://cqrs.files.wordpress.com/2010/11/cqrs documents.pdf

Article by Microsoft

http://msdn.microsoft.com/en-us/library/dn568103.aspx

DDD/CQRS sample application

http://carssample.codeplex.com/

REST APl and CQRS

http://www.infog.com/articles/rest-api-on-cqrs

http://cqrs.files.wordpress.com/2010/11/cqrs_documents.pdf
http://msdn.microsoft.com/en-us/library/dn568103.aspx
http://cqrssample.codeplex.com/
http://www.infoq.com/articles/rest-api-on-cqrs

References

Event sourcing

https://dev.to/barryosull/event-sourcing-what-it-is-and-why-its-awesome

https://docs.microsoft.com/en-us/previous-versions/msp-n-p/ii5oi15cq(v=pandp.10)

https://martinfowler.com/eaaDev/EventSourcing.html

http://cars.wikidot.com/doc:event-sourcing

https://bulldogjob.pl/articles/122-cars-i-event-sourcing-czyli-latwa-droga-do-
skalowalnosci-naszych-systemow

https://dev.to/barryosull/event-sourcing-what-it-is-and-why-its-awesome
https://docs.microsoft.com/en-us/previous-versions/msp-n-p/jj591559(v=pandp.10)
https://martinfowler.com/eaaDev/EventSourcing.html
http://cqrs.wikidot.com/doc:event-sourcing
https://bulldogjob.pl/articles/122-cqrs-i-event-sourcing-czyli-latwa-droga-do-skalowalnosci-naszych-systemow_

