Pawet Rajba
pawel@cs.uni.wroc.pl
http://pawel.ii.uni.wroc.pl/

Neos4) & Cassandra

mailto:pawel@cs.uni.wroc.pl
http://pawel.ii.uni.wroc.pl/

Neos)

Introduction

Graph model

Properties of graph database
Cypher and example database

Introduction

Website: https://neosj.com/ ., L |

A graph database =5 \%T
Focusing primarily on relations &%

Cypher as a query language
With roots in SQL

Drivers for Popular Programming Languages
Net, Java (also Spring), JavaScript, and Python
Communication based on binary "Bolt” protocol

@ NeOLj

https://neo4j.com/

Introduction

Expressive Cypher
Language

The Property Graph
Model captures data as it
naturally occurs

Introduction

A series of introduction videos available

https://www.youtube.com/playlist?list=PLgHIl4pk2FsvWMqGWaguRhICQ-pa-ERd4U

Intro to Graph Databases Episode #1 - Evolution of DBs
ACID E Neodj
- Intro to Graph Databases Episode #2 - Properties of Graph DBs & Use Cases

2 “ § Neodj

Intro to Graph Databases Episode #3 - Property Graph Model

Meodj

-

; O

Intro to Graph Databases Episode #4 - (RDBMS+SQL) to (Graphs+Cypher)
A B & Neodj

£ &°

* 9 . = Intro to Graph Databases Episode #5 - Cypher, the Graph Query Language
1)

L]

2

Neodj

M

Intro to Graph Databases Episode #6 - Continuing with Cypher
6 Neodj

https://www.youtube.com/playlist?list=PL9Hl4pk2FsvWM9GWaguRhlCQ-pa-ERd4U

Introduction

All Industries

NEO4j USE CASES
Waimarts' | o I\ eb

Adobe

Real Time Recommendations

Master Data Management B oo R o
Fraud Detection P
US Army S Bank & s
Graph Based Search
o :31,% UBS PER M B8 Microsoft
Network & IT-Operations penrten
Identity & Access Management § 1=] %

Introduction

Products & Services
https://neosj.com/product/auradb/

AuraDB Free AuraDB Professional AuraDB Business Critical
/GB/month /GB/month

S 0 $ 6 5 (minimum 1GB cluster) S 1 46 (minimum 2GB cluster)

Learn and Explore Graphs Build Production-Ready Apps Scale Apps for Enterprise Use

Start Learnlng Try for Free “

:,ﬂ Neo4j Desktop m Neo4dj Browser
Experience Neodj on Your Local Explore Your Database and Craft
Desktop. For Free. the Perfect Cypher Query.

Learn More Learn More

https://neosj.com/product/developer-tools/

Graph model

Treat the relationships between data as equally important
to the data itself
Rel. databases compute relationships at query time
through JOIN operations
A g;lawh database stores connections alongside the data in the
modae
Key constituents of the graph model

Nodes — entities in the graph

Relationships — directed, named connections between two
nodes (e.g. Employee WORKS_FOR Company)

Even if directed, they can be navigated in both directions

Properties — key/value pairs that can be attached both to nodes
and relationships

Labels on nodes — representing types of nodes

Graph model

:HAS_CEO

. -01- : N 5
Employee ? start_date: 2008-01-20 Company LOCATED | : City

name: Amy Peters
date_of birth: 1984-03-01
employee_ID: 1

Graph model

Properties of graph databases

Criterias to evaluate

Intuitiveness

Easier to take a journey from requirements and whiteboard to the
actual data model

graph is natural way of expressing thoughts and though less translations are
needed

Speed
Simpler model, so much quicker from the idea to the deployment
Ebay: Neosj 1000x faster than MySQL based solution with 10-100 less code

Agility
No schemas, a naturally adaptive model (if sth needed, just add it)

Cypher language as a more concise way to express queries
What enables quicker understanding and easier way to change

Properties of graph databases

Graph & Cypher power*

MATCH (boss)~-|

.3]=->(sub),
«+3]=->(report)

Doe”

RETURN 1b.r AS Sub iinate,

*Assuming the SQL query is written in the optimal way what probably is not the case

Example database

Movies database
https://neosj.com/developer/example-project/
Domain model

(:Person {name})-[:ACTED_IN {roles}]->(:Movie {title,released})

What's inside?

Relationship Types

Node Labels Property Keys

O o J oD EED

bom name rating released

roles summany tagline

FOLLOWS @ PRODUCED
B =8

title

https://neo4j.com/developer/example-project/

Cypher

Open language
http://www.opencypher.org/
Useful command
:help CREATE, :help MATCH, :help STH
Based on ASCII Art and patterns
Basic pattern
()-[:RELATIONSHIP]->()

Node — REL —> Node
Query

MATCH pattern
WHERE conditions
RETURN result

http://www.opencypher.org/

Cypher

AsciiArt for nodes
Nodes
() or (p)
Labels, tags
(p:Person:Mammal)
Properties
(p:Person { name: John'})
AsciiArt for relationship
Relationship
--> -[a:ACTED_IN]->
Direction
(p1) -[:ACTED_IN]-> (p2) (p1) <-[:ACTED_INI- (p2)
Properties
(p1) -[a:ACTED_IN { type: 'series' }]-> (p2)
Aliases

P1, P2, 4

Cypher

Actors
Marek Kondrat (MK)
Ur. 18.10.1950

Piotr Fronczewski (PF)
Ur. 8.6.1946

Krzysztof Kowalewski (KK)
Ur. 20.03.1937

Janusz Gajos (JG)

Ur. 23.09.1939
Zbigniew Zapasiewicz (ZZ)
Ur. 13.09.1934, Zm. 14.07.2009
Movies

Psy (Psy)

C.K. Dezerterzy (CKD)

Dzien swira (DS)

Mis (Mis)

Akademia Pana Kleksa (APK)

Acted in

Psy
MK (Olo)
ZZ (Wencel)
JG (Siwy)
CKD
MK (Kania)
KK (boss)
ZZ (Wagner)
DS
MK (Adas Miauczynski)
PF (doctor)
Mis
KK (Jan Hochwander)
APK
PF (Ambrozy Kleks)

Cypher

CRUD Examples
CREATE (:Person { name: "Marek Kondrat"}) -[:ACTED_IN]-> (:Movie { name: "Psy" })
CREATE (:Person { name: "Janusz Gajos", born: "23.09.1939"})

MATCH (:Movie { name: "Psy" })<-[a:ACTED_IN]-(:Person { name: "Marek Kondrat"}) SET
a.character="Olo" RETURN a

MATCH (p:Person),(m:Movie)

WHERE p.name = ‘Janusz Gajos' AND m.name = 'Psy’
CREATE (p)-[r:ACTED_IN { character: "Siwy" }]->(m)
RETURN type(r), r.character

MATCH (:Movie { name: "Psy" })<-[:ACTED_IN]-(p:Person) RETURN p
MATCH (m:Movie)<-[:ACTED_IN]-(p:Person) WHERE m.name="Psy" RETURN p

MATCH (n:Person { name: 'UNKNOWN'})
DELETE n

MATCH (n)
DETACH DELETE n

Wiecej: https://neosj.com/docs/cypher-manual/current/clauses/

https://neo4j.com/docs/cypher-manual/current/clauses/

Potentially useful

https://neosj.com/docs/operations-

manual/current/configuration/password-and-user-recovery/
Additional resources

https://medium.com/@arminpezo 62757/meet-neosj-step-by-step-
guide-to-graph-database-3c182ddzccs2

https://github.com/neo4j-examples/movies-dotnetcore-bolt

https://medium.com/@arminpezo 62757/integration-of-net-
application-with-neogj-database-cffai528929c

https://neo4j.com/docs/operations-manual/current/configuration/password-and-user-recovery/
https://neo4j.com/docs/operations-manual/current/configuration/password-and-user-recovery/
https://medium.com/@arminpezo_62757/meet-neo4j-step-by-step-guide-to-graph-database-3c182dd7cc42
https://medium.com/@arminpezo_62757/meet-neo4j-step-by-step-guide-to-graph-database-3c182dd7cc42
https://github.com/neo4j-examples/movies-dotnetcore-bolt
https://medium.com/@arminpezo_62757/integration-of-net-application-with-neo4j-database-cffa1528929c
https://medium.com/@arminpezo_62757/integration-of-net-application-with-neo4j-database-cffa1528929c

Apache Cassandra

Introduction

Apache Cassandra is an open-source, NoSQL,
column-oriented database

Focus on scalability, availability, fault-
tolerance, replication suport

Less focus on data integrity, no JOINS
Initially created at Facebook forinbox search

Open source at 2008, started in Apache Incubator
in 2009 and top level project at Apache from 2010

CQL as query language (similar to SQL)

Key Concepts

Keyspace
Defines how a dataset is replicated, per datacenter.
Replication is the number of copies saved per cluster.

Keyspaces contain tables
Table

Tables are partitioned based on the columns provided in the
partition key

Cassandra tables can flexibly add new columns to tables with
zero downtime

Partition
Defines the mandatory part of the primary key for all rows
Identify the node in a cluster where the row is stored

All performant queries supply the partition key in the query
Rows & Columns

https://cassandra.apache.org/doc/latest/cassandra/architecture/overview.html

Getting started

Starting the server
docker pull cassandra:latest
docker network create cassandra

docker run --rm -d --name cassandra --hostname
cassandra --network cassandra cassandra

https://cassandra.apache.org/doc/latest/cassandra/getting-started/cassandra-quickstart.html

Getting started

Pushing sample data and launching client

docker run --rm --network cassandra -v
"$(pwd)/data.cql:/scripts/data.cql" -e
CQLSH_HOST=cassandra -e CQLSH_PORT=g042
-e CQLVERSION="3.4.7" nuvo/docker-cqlsh

Remark: in case of connectivity problem, execute as a
prerequisite the next command
docker run --rm -it --network cassandra
nuvo/docker-cqlsh cqlsh cassandra 9042 --
cqlversion="3.4.7"

Getting started

First queries:
SELECT * FROM store.shopping_cart;

INSERT INTO store.shopping_cart (userid,
item_count) VALUES ('4567', 20);

	Slide 1: Neo4j & Cassandra
	Slide 2
	Slide 3: Agenda
	Slide 4: Introduction
	Slide 5: Introduction
	Slide 6: Introduction
	Slide 7: Introduction
	Slide 8: Introduction
	Slide 9: Graph model
	Slide 10: Graph model
	Slide 11: Graph model
	Slide 12: Properties of graph databases
	Slide 13: Properties of graph databases
	Slide 14: Example database
	Slide 15: Cypher
	Slide 16: Cypher
	Slide 17: Cypher
	Slide 18: Cypher
	Slide 19: Others
	Slide 20
	Slide 21: Introduction
	Slide 22: Key Concepts
	Slide 23: Getting started
	Slide 24: Getting started
	Slide 25: Getting started

