
Programming Applications with Databases

Exercise Set 7

1. Register and create a free instance in Neo4j Aura: https://console.neo4j.io/. Create an ex-
ample Movie database based on the short script at https://neo4j.com/docs/cypher-manual/
current/clauses/match/.
[1p]

2. In the example database

• add 2 new actors and 2 new movies,

• add 2 new properties to 1 movie,

• add 2 new acted in relations to the existing nodes,

• update 1 movie property,

• remove 1 acted in relation.

[2p]

3. Prepare the following queries

• return the movies where person A acted in,

• return the movies where person A was both the actor and the director,

• return actors who didn’t play in any movie,

• return actors who played in more than 2 movies,

• return movies with the larger number of actors.

In case it is needed, additional nodes or relations can be added. For more details about functions
in Cypher see https://neo4j.com/docs/cypher-manual/current/functions/.
[2p]

4. Using the code from https://neo4j.com/docs/dotnet-manual/current/get-started/ (Exam-
ple 3), implement a solution which fetches all persons from a database created in the Exercise 1
and print all details as a table in the console.
Remark: In case some other technology is more preferred, please refer to
https: // neo4j. com/ docs/ create-applications/ .
[2p]

5. Implement a solution as specified in the previous exercise, but with the following changes:

• all the fetched data is mapped to the appropriate object model covering both nodes and
relationships, e.g. a node Person is mapped to the respective object of the Person class with
all required properties,

• extend the code to support the all CRUD operations.

For an initial inspiration, please refer to https://github.com/DotNet4Neo4j/Neo4jClient (also
available as a NuGet package).
Remark: In case some other technology is more preferred, please refer to
https: // neo4j. com/ docs/ create-applications/ .
[3p]

Paweł Rajba


