
Hardware platforms and interfaces

Presentation plan: microcontrollers

- Speed vs latency
- Price
- IO
- Arduino ecosystem

- Microcontrollers review: STM32
- Microcontrollers review: NodeMCU

Presentation plan: embedded computers

- How do they differ?
- What to be careful about
- What to be really careful about
- Family / manufacturer review
- Multimedia support

Presentation plan: embedded computers review

- Review: Raspberry PI (Broadcom)
- Review: Jetson (Nvidia)
- Review: UP board (Intel)
- Review: Banana/Orange/Nano PI (Allwinner)
- Review: Odroid (Samsung)
- Review: PINE (Rockchip)

Presentation plan: protocols

- Device discovery and configuration
- Differences in physical layer
- I2C, SPI, UART
- CAN bus

Presentation plan: peripherals

- Relay
- Motor (DC, Stepper motor, BLDC)
- Servo
- LED
- WiFi, Ethernet, Bluetooth
- Loud speakers ;)

Microcontroller vs embedded computer

Microcontroller (STM32F103)

Cost: 5.50\$
Power: 0.1W
Boot time: instant

Raspberry PI

40.00\$ 2.5W ≈ 10s

Microcontroller vs embedded computer

- Lower computational power, but faster reaction
- Real time capability
- Complete datasheet for everyone (!!!)
- Environmental resistance
- More low-level IO
- Faster low-level IO

Lower computational power, but faster reaction

Arduino ecosystem

Subjective statements ahead!

Arduino ecosystem

Arduino ecosystem

Pros:

- Extremely easy to start using
- A lot of libraries (of various quality)
- A lot of tutorials / people willing to help

Cons:

- Atmel's microcontrollers are primitive
- Buildsystem that hides everything from you
- Mandatory C++ (wtf)
- License restrictions
- Interface incompatibility on purpose

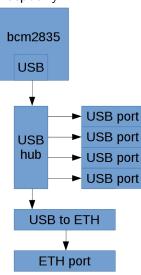
Review: NodeMCU

- Has WiFi.
- Programmable in C or Lua.
- 4.00\$ (!)

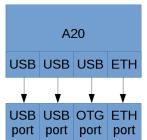
Review: STM32

- ARM based
- Compatible with standard GNU toolchain
- Wide MCU selection
- Hardware Abstraction Library
- CubeMX

How do embedded computers differ?



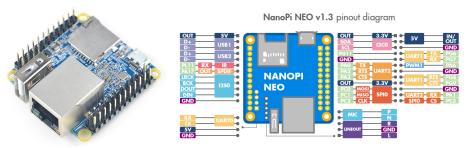
What to be careful about?


	Raspberry Pi 2 Model B	Banana Pi
Processor	ARM Cortex A7 – 900 MHz – quad core	Allwinner A20 – Cortex A7 – 1 GHz – dual core
RAM	1 GB LPDDR2	1 GB DDR3
External storage	MicroSD	SD Card, 2.5" SATA
GPU	VideoCore IV – dual core	Mali 400 MP2 – dual core
USB	4 x USB 2.0	2 x USB 2.0
Video out	1 x HDMI – 1.3 or 1.4	1 x HDMI, 1 x Composite
GPIO	40-pin expansion header	26-pin expansion headers
Network	1 x 10/100 Ethernet	1 x 10/100/1000 Ethernet (802.11n on Pro)

What to be careful about?

Banana PI:

What to be careful about?


Moduł podłączany jest do dedykowanego złącza w Banana Pi za pomocą taśmy.

Specyfikacja

- Chip: OV5640
- · Matryca: 5 Mpx
- Wspiera tryb HD 1080p dla 30 fps
- Złącze: 40 pinowa taśma FFC (w zestawie)
- Kompatybilna ze złączem Banana Pi
- Temperatura pracy: od -30 °C do 70 °C
- Wymiary: 36 x 32 x 10 mm
- Masa: 8 g

Board review Nano PI

- Small and cheap (55PLN)
- Faster than Raspberry PI Zero
- Good IO, especially 3x USB 3.0
- Heats up badly under load

UP Board

- The only open source board on this presentation (software-wise)
- x86 excellent support for OpenGL and OpenCL
- Good performance

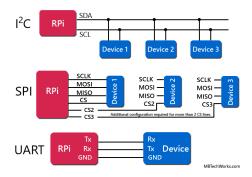
Nvidia Jetson TX2

- Best computational power
- CUDA
- Excellent IO: PCI-E, SATA, USB 3.0, CSI: up to 6 1080p cameras, 2x CAN
- Proprietary kernel
- Ridiculusly expensive

PINE Rockpro64

- Excellent performance
- OpenCL
- Excellent IO: PCI-E, SATA, USB 3.0, CSI: up to 2 4K cameras
- Ridiculusly affordable (80\$)

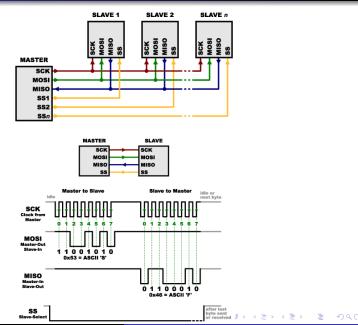
Raspberry PI 3

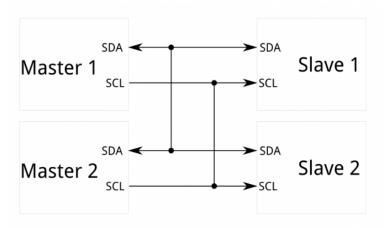


- Great camera support
- Terrible IO bandwidth
- Wifi and Bluetooth
- Affordable

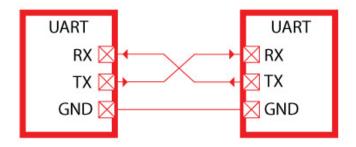
Knock, knock. Who's there? hid-generic 0003:1532:0016

- Metadata in specification
 - USB
 - PCle
- Metadata not defined
 - SPI
 - UART
 - 12C
 - CAN

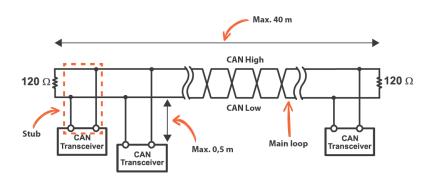



How to recognize and talk to the device?

- Normal way
- Device tree
- Register harassment



You must choose, but choose wisely.



UART

CAN bus

Maybe you want to hear about...

- Motor control
- Cameras and video transmission
- Sound
- Safety ciritical systems
- Batteries
- Politics and RISC V
- FPGAs
- I want to go home