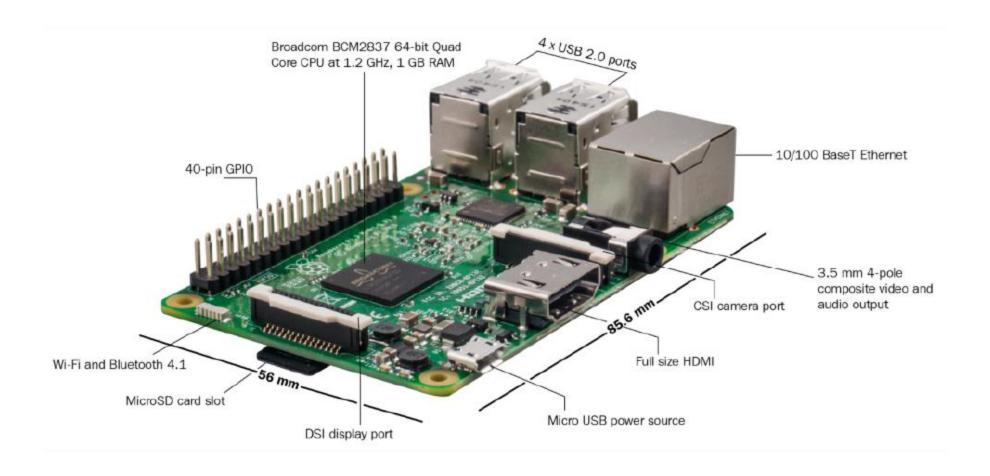


RASPBERRY PI: PROGRAMMING INTRODUCTION, THE VERY FIRST APP

SEMINARIUM: IOT

RASPBERRY PI GET STARTED

- Understanding Raspberry Pi 3
- Features of Raspberry Pi 3
- Setting up Raspberry Pi 3


169173

Nokia's 3310 would weight the same as all of the Pis

SOURCE: WWW.WIRED.COM

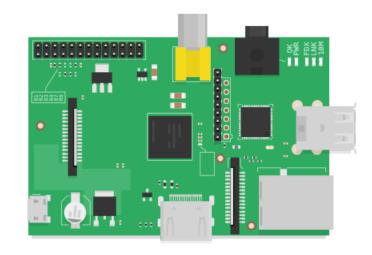
UNDERSTANDING RASPBERRY PI 3

UNDERSTANDING RASPBERRY PI 3

a miniature computer

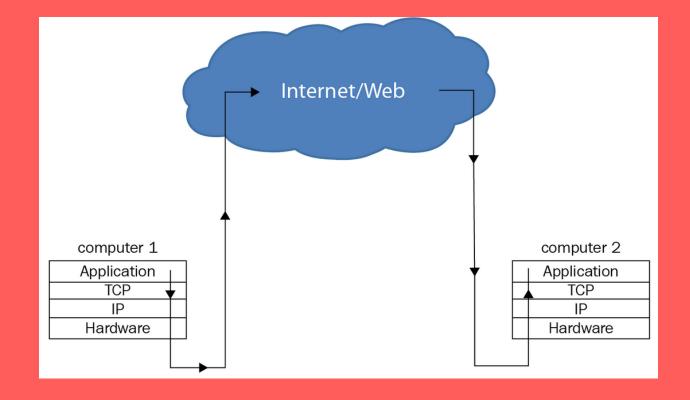
Raspberry Pi is one of the most widely used boards for IoT projects due to its small size, general purpose input/output pins, Wi-Fi, and Bluetooth

	a miniatare oc	mpac	CI	
Pin#	NAME		NAME	Pin#
01	3.3v DC Power		DC Power 5v	02
03	GPIO02 (SDA1 , I2C)	00	DC Power 5v	04
05	GPIO03 (SCL1, I2C)	00	Ground	06
07	GPIO04 (GPIO_GCLK)	00	(TXD0) GPIO14	08
09	Ground	00	(RXD0) GPIO15	10
11	GPIO17 (GPIO_GEN0)	00	(GPIO_GEN1) GPIO18	12
13	GPIO27 (GPIO_GEN2)	00	Ground	14
15	GPIO22 (GPIO_GEN3)	00	(GPIO_GEN4) GPIO23	16
17	3.3v DC Power	00	(GPIO_GEN5) GPIO24	18
19	GPIO10 (SPI_MOSI)	0	Ground	20
21	GPIO09 (SPI_MISO)	00	(GPIO_GEN6) GPIO25	22
23	GPIO11 (SPI_CLK)	00	(SPI_CE0_N) GPIO08	24
25	Ground	00	(SPI_CE1_N) GPIO 07	26
27	ID_SD (I2C ID EEPROM)	00	(I ² C ID EEPROM) ID_SC	28
29	GPIO05	00	Ground	30
31	GPIO06	00	GPIO12	32
33	GPIO13	00	Ground	34
35	GPIO19	00	GPIO16	36
37	GPIO26	00	GPIO20	38
39	Ground	00	GPIO21	40


IMPORTANT FEATURES OF RASPBERRY PI 3 MODEL B

- Power
- USB
- GPIO
- 12C
- UART
- SPI
- PWM

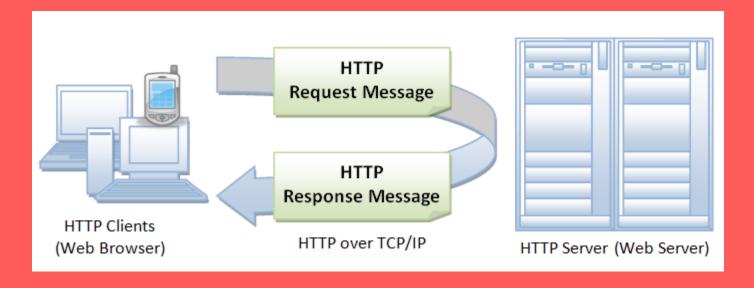
SETTING UP RASPBERRY PI


- Connect RPI to 2.5A micro USB power adapter
- Install MicroSD card with at least 8GB
- Download the Raspbian Lite OS
- Write it to the SD card using a laptop/desktop
- Create an empty file with the name ssh without any extension
- Take out the SD card and insert it into Raspberry Pi

THE INTERNET TCP/IP

Transmission control protocol Application Protocol Internet protocol

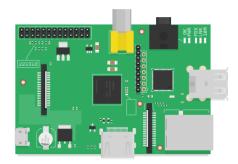
Hardware


ADVANTAGES OF USING NODEJS FOR IOT

Asynchronous and event-driven
Single threaded
No buffering
Open source
Fast

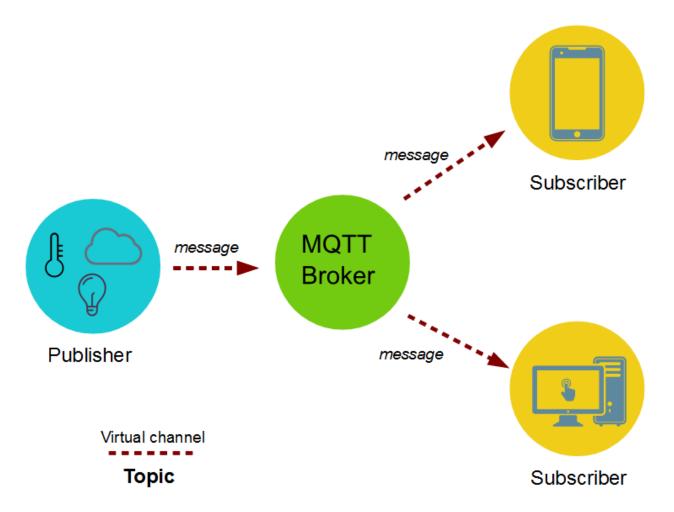
HTTP

Hyper Text Transfer Protocol (HTTP)


- The client sends a request to the server. A request consists of the HTTP version, HTTP method, URL, and arguments or the message body.
- The server receives and parses the request. Based on the port and path, it maps it to the correct resource and after performing the necessary computation, it prepares the response and sends it back to the client.

IMPLEMENTING HTTP

HTTP server (laptop)- express.js HTTP client - node-rest-client


MQTT

MESSAGE QUEUE TELEMETRY TRANSPORT

Developed by Dr. Andy Stanford Clark of IBM and Arlen Nipper of Arcom (now Eurotech) in 1999The server receives and parses the request.

- Minimizing the device's resource requirements
- Very high scalability
- Smaller code footprint
- Small network bandwidth consuption
- Ensures delivery of messages/signals

MQTT ARCHITECTURE

MQTT MESSAGE TYPES

Three types of message are mostly used:

- CONNECT: Used for clients to send connection requests to the broker
- PUBLISH: Used by the client/sender to publish messages to the broker
- SUBSCRIBE: Used by the client/receiver to receive messages from the broker

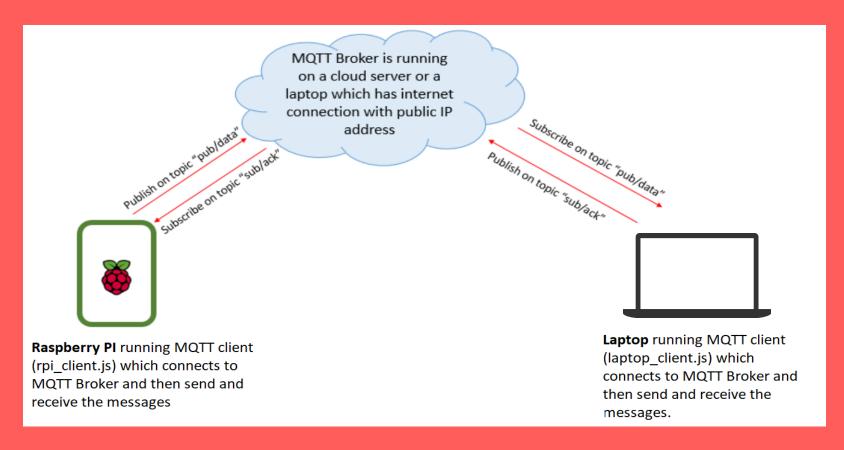
MQTT BROKERS

Mosquitto

HiveMQ

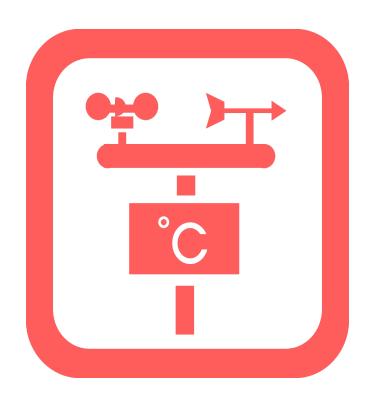
Apache ActiveMQ

RabbitMQ



Erlang MQTT (EMQ)

MQTT IMPLEMENTATION


- MQTT BROKER: Laptop
- MQTT CLIENT: Raspberry PI 3 B

WEATHER STATION

Projects components:

- Sensors
- Weather API
- Raspberry Pi 3Model B

THANK YOU FOR LISTENING!

Programming introduction to Raspberry Pi, review of communication patterns and protocols specific to IoT

