
Paweł Rajba
pawel@cs.uni.wroc.pl
http://itcourses.eu/

mailto:pawel.rajba@gmail.com
http://kursy24.eu/


 Security tokens

▪ Tokens history

▪ JSON Web Token

 Why tokens?
 OAuth2?

▪ Actors

▪ Client types and profiles

▪ Registration

▪ Authorization flows



 A data structure with the following features

▪ Contains information about an issuer and a 
subject, usually with expiration date

▪ Signed, sometimes also encrypted

▪ Typical roles

▪ A client requests a token

▪ An issuer issues a token

▪ A service consumes a token
▪ There is a trust between the issuer and the service



 Tokens history
▪ SAML 1.1/2.0

▪ XML based format
▪ Very expressive with many options, including security
▪ Popular in SOAP services

▪ Simple Web Token (SWT)
▪ Form/URL based format
▪ Very limited possibilities, e.g. only symmetric signatures

▪ JSON Web Token (JWT)
▪ JSON based format
▪ A new format with a strongly increasing prevalence
▪ Lightweight, however quite expressive
▪ But still SAML is much more expressive



 JSON Web Token

 Let’s take a look on https://jwt.io/

https://jwt.io/


 All parts are encoded with Base64url:
 Base64 vs Base64url

▪ Both are intended to encode binary data into ASCII

▪ However, Base64url is intended to be URL safe

▪ „+” is replaced by „-”

▪ „/” is replaced by „_”

▪ Padding „=„ is usually ommitted
▪ optional, but not recommended

 More: http://en.wikipedia.org/wiki/Base64

http://en.wikipedia.org/wiki/Base64


 JSON Web Token, claims
▪ There are 3 sets of claims

▪ Registered in IANA (like iss, iat, exp, …)
▪ Public claim name
▪ Private claim name

▪ Common claims
▪ "iss" (Issuer)
▪ "sub" (Subject)
▪ "aud" (Audience)
▪ "exp" (Expiration Time)
▪ "nbf" (Not Before)
▪ "iat" (Issued At)
▪ "jti" (JWT ID) Claim

 Documentation
▪ http://self-issued.info/docs/draft-ietf-oauth-json-web-token.html

http://self-issued.info/docs/draft-ietf-oauth-json-web-token.html


 More about standards
▪ JSON Web Algorithms (JWA)

▪ Details on algorithms around the JWT, JWS, JWE, JWK

▪ JSON Web Key (JWK)
▪ Data structure represting keys for singing and encryption

▪ JSON Web Token (JWT)
▪ Data structure for representing claims

▪ JSON Web Encryption (JWE)
▪ Encrypted JWT

▪ JSON Web Signature (JWS)
▪ Signed JWT

 Corollary: a JWT on slide 5 was actually JWS



 We consider 2 main approaches for granting
access:

▪ Cookie-based authentication

▪ In a cookie is only session ID

▪ Whole information about an user is in session on a server

▪ Token-based authencation

▪ Whole information about an user is in token

▪ There is no session needed – authN is stateless



 What main arguments do we have for tokens?

▪ Cross-domain

▪ If we use HTTP header, cross domain is easily achievable

▪ Stateless

▪ No session is needed

▪ Single Responsilibity

▪ Granting access process is separated from serving data

▪ There is no coupling between token issuer and consumer

▪ Mobile compatible

▪ Most of current mobile technologies are tokens-oriented



 Let’s imagine the following scenario
▪ You have an account on Google

▪ You found a very fancy calendar application on 
your phone market

▪ You want to use it, but don’t want to give the 
application permission to all Google account data 
(e.g. mails, contacts, etc. – only calendar entries)

 In this scenario we consider 3rd party 
application which is considered as untrusted
▪ And this is the place when the OAuth2 helps



 There is a nice iOS application to show e-mails: GimmeMails
In OAuth2 the flow looks a follows:



In the framework there is a service where you can authenticate,
but in the return application gets an access token which allows

the application to access specific data
There is no user involved after authentication



 Described in RFCs:

▪ The OAuth 2.0 Authorization Framework
▪ https://tools.ietf.org/html/rfc6749

▪ The OAuth 2.0 Authorization Framework: Bearer Token Usage
▪ https://tools.ietf.org/html/rfc6750

▪ OAuth 2.0 Dynamic Client Registration Management Protocol
▪ https://tools.ietf.org/html/rfc7592

▪ OAuth 2.0 Token Introspection
▪ https://tools.ietf.org/html/rfc7662

https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6750
https://tools.ietf.org/html/rfc7592
https://tools.ietf.org/html/rfc7662


 Actors

▪ Resource server

▪ Service which is protected and understands tokens

▪ Resource owner

▪ User

▪ Client

▪ 3rd party application

▪ Authorization server

▪ The one who issues tokens



 Abstract protocol flow



 Client types and profiles

▪ We consider 2 types of clients

▪ Confidential
▪ Take place if client secret is known only for client application

 Especially is not shared with resource owner

▪ Public
▪ The opposite situation



 Client types and profiles

▪ Protocol emphasizes 3 types of clients

▪ Server-side web application

▪ Client-side application running in a web browser

▪ Native application



 Client types and profiles

▪ Protocol emphasizes 3 types of clients

▪ Server-side web application
▪ The application makes API

calls using a server-side
programming language

▪ The user has no access to the 
OAuth client secret or any 
access tokens issued by the 
authorization server

Source: http://tutorials.jenkov.com/oauth2/client-types.html

http://tutorials.jenkov.com/oauth2/client-types.html


 Client types and profiles

▪ Client-side application running in a web browser

▪ The application makes API calls form web browser
technology like JavaScript or Flash

▪ Usually it is a SPA-like app
hosted on web server, but 
run fully in a web browser

Source: http://tutorials.jenkov.com/oauth2/client-types.html

http://tutorials.jenkov.com/oauth2/client-types.html


 Client types and profiles

▪ Native application

▪ Similar solution as client-side application

▪ Usually it is desktop or mobile application

▪ Difference is that everything is
stored on user’s device

Source: http://tutorials.jenkov.com/oauth2/client-types.html

http://tutorials.jenkov.com/oauth2/client-types.html


 Key characteristics
▪ OAuth2 is about authorization
▪ Or, actually, it’s a delegation protocol

▪ Access is granted based on access_token
▪ which doesn’t include anything about identity

▪ Resource owner agrees to share resources with a 
third party application
▪ So called „consent screen”

▪ Client doesn’t get the user’s password in code and 
implicit flows



 Registration
▪ Usually in real world, an application (client) needs to 

register in the resource server
▪ On other words, there is a trust between client and 

resource server, client authenticates in RS
▪ As a outcome, usually client gets

▪ Client ID
▪ Client Secret
▪ Client secret is required only in the confidential clients flows

▪ Additionally with client application a redirect URI is
associated
▪ Used when user (resource owner) successfully authenticates

on authorization server



 Authorization flows

▪ Authorization Code Flow

▪ Implicit Flow

▪ Resource Owner Credential Flow

▪ Client Credential Flow



 Authorization Code Flow

▪ Dedicated for web applications

▪ Client can store secret securely on the server

▪ Access token never sent to a browser

▪ Browser gets a code exchanged later for an access token

▪ Tokens

▪ Access token: short time, gives access to the resource

▪ Refresh token: long time, allows to get a new access token

▪ This is most often used flow



 Authorization Code Flow

https://docs.oracle.com/cd/E39820_01/doc.11121/gateway_docs/content/oauth_flows.html

https://docs.oracle.com/cd/E39820_01/doc.11121/gateway_docs/content/oauth_flows.html


 Implicit Flow

▪ Dedicated to desktop, SPA and mobile 
applications

▪ Very similar to code flow, but there is no code, 
access token is sent directly to device

▪ There is no refresh token



 Implicit Flow

https://docs.oracle.com/cd/E39820_01/doc.11121/gateway_docs/content/oauth_flows.html

https://docs.oracle.com/cd/E39820_01/doc.11121/gateway_docs/content/oauth_flows.html


 Resource Owner Credential Flow
▪ In previous flows authentication is performed on AS

▪ In this case client directly authenticate on AS
▪ Client get the username and password and use it for 

authentication

▪ Client should forget the password after authentication
▪ What means, that client application must be trusted

▪ Authorization response
▪ with access & refresh token

▪ Client app use access token to access resources



 Resource Owner Credential Flow

https://docs.oracle.com/cd/E39820_01/doc.11121/gateway_docs/content/oauth_flows.html

https://docs.oracle.com/cd/E39820_01/doc.11121/gateway_docs/content/oauth_flows.html


 Client Credential Flow

▪ Use for “service to service” communication

▪ Client application itself ask AS for token

▪ Client apps doesn’t do this “on behalf” of some 
user – there is no user involved.

▪ Provided are client_id and client_secret

▪ See example:
http://dev.mendeley.com/reference/topics/authorization_client_credentials.html

http://dev.mendeley.com/reference/topics/authorization_client_credentials.html


 Client Credential Flow

https://docs.oracle.com/cd/E39820_01/doc.11121/gateway_docs/content/oauth_flows.html

https://docs.oracle.com/cd/E39820_01/doc.11121/gateway_docs/content/oauth_flows.html


 Summary of use cases
▪ Web-server applications
▪ Authorization code flow

▪ Browser based applications
▪ Implicit flow

▪ Username/password access
▪ Resource Owner Credential Flow

▪ Mobile applications
▪ Implicit flow

▪ Application access
▪ Client credentials flow



 Why authorization grant flow? Why not just implicit
one?
▪ No need to HTTPS between browser and client
▪ No risk that JavaScript (or whatever else) steal an access

token
▪ Client Secret prevents from malicious app getting access

to data (e.g. by poisoning the DNS)
 On the other hand it is important that in implicit flow

access token is only on client
▪ No risk that any other party of solution with steal an

access token
▪ No risk of man-in-the-middle

▪ The relations is only between client and resource server

http://stackoverflow.com/questions/13387698/why-is-there-an-authorization-code-flow-in-oauth2-when-implicit-flow-works-s
https://salesforce.stackexchange.com/questions/14009/whats-the-benefit-of-the-client-secret-in-oauth2

http://stackoverflow.com/questions/13387698/why-is-there-an-authorization-code-flow-in-oauth2-when-implicit-flow-works-s
https://salesforce.stackexchange.com/questions/14009/whats-the-benefit-of-the-client-secret-in-oauth2


 Scopes
▪ Define what authorizarions will be given

▪ Are expressed as a set of case-sensitive and space-
delimited strings

▪ Should be shared between auth and resource

▪ Example scopes:
▪ Google:
▪ https://www.googleapis.com/auth/analytics

▪ https://www.googleapis.com/auth/calendar

▪ https://www.googleapis.com/auth/gmail.readonly

▪ Facebook: user_friends, email, user_photos, user_posts

https://developers.google.com/identity/protocols/googlescopes
https://developers.facebook.com/docs/facebook-login/permissions/

https://www.googleapis.com/auth/analytics
https://www.googleapis.com/auth/calendar
https://www.googleapis.com/auth/gmail.readonly
https://developers.google.com/identity/protocols/googlescopes
https://developers.facebook.com/docs/facebook-login/permissions/


 What is access token?
▪ There are 2 types of tokens
▪ By value or self-contained, e.g. JWT

▪ By reference, e.g. random string

▪ Which approach is better?
▪ JWT
▪ no need to ask AS, but no way to revoke

 problem with long lived AT, logout operations

▪ By reference
▪ Central management, but there is a need for additional

communication is AS



 Tokens in OAuth2, balanced approach
Internet External Network Internal Network

Web browser Reverse Proxy Web API

By reference
access token

By value
access token

Token
translation



 Let’s play
▪ https://developers.google.com/oauthplayground/

https://developers.google.com/oauthplayground/


 Tokens consideration
▪ https://auth0.com/blog/2014/01/07/angularjs-authentication-with-cookies-vs-token/
▪ https://auth0.com/blog/2014/01/27/ten-things-you-should-know-about-tokens-and-cookies/
▪ http://jpadilla.com/post/73791304724/auth-with-json-web-tokens
▪ http://self-issued.info/docs/draft-ietf-oauth-json-web-token.html
▪ https://developer.atlassian.com/static/connect/docs/concepts/understanding-jwt.html
▪ http://msdn.microsoft.com/en-us/library/gg185950.aspx
▪ http://www.slideshare.net/briandavidcampbell/owasp-vancouver
▪ http://stackoverflow.com/questions/18677837/decoding-and-verifying-jwt-token-using-

system-identitymodel-tokens-jwt
▪ http://dotnetcodr.com/2014/01/20/introduction-to-oauth2-json-web-tokens/

 OAuth2 by Oracle
▪ https://docs.oracle.com/cd/E39820_01/doc.11121/gateway_docs/content/oauth_flows.html

 OAuth2 Threat model and security consideration
▪ https://tools.ietf.org/html/rfc6819

https://auth0.com/blog/2014/01/07/angularjs-authentication-with-cookies-vs-token/
https://auth0.com/blog/2014/01/27/ten-things-you-should-know-about-tokens-and-cookies/
http://jpadilla.com/post/73791304724/auth-with-json-web-tokens
http://self-issued.info/docs/draft-ietf-oauth-json-web-token.html
https://developer.atlassian.com/static/connect/docs/concepts/understanding-jwt.html
http://msdn.microsoft.com/en-us/library/gg185950.aspx
http://www.slideshare.net/briandavidcampbell/owasp-vancouver
http://stackoverflow.com/questions/18677837/decoding-and-verifying-jwt-token-using-system-identitymodel-tokens-jwt
http://dotnetcodr.com/2014/01/20/introduction-to-oauth2-json-web-tokens/
https://docs.oracle.com/cd/E39820_01/doc.11121/gateway_docs/content/oauth_flows.html
https://tools.ietf.org/html/rfc6819

