
Paweł Rajba
pawel@cs.uni.wroc.pl
http://itcourses.eu/

mailto:pawel.rajba@gmail.com
http://kursy24.eu/


 Security tokens

▪ Tokens history

▪ JSON Web Token

 Why tokens?
 OAuth2?

▪ Actors

▪ Client types and profiles

▪ Registration

▪ Authorization flows



 A data structure with the following features

▪ Contains information about an issuer and a 
subject, usually with expiration date

▪ Signed, sometimes also encrypted

▪ Typical roles

▪ A client requests a token

▪ An issuer issues a token

▪ A service consumes a token
▪ There is a trust between the issuer and the service



 Tokens history
▪ SAML 1.1/2.0

▪ XML based format
▪ Very expressive with many options, including security
▪ Popular in SOAP services

▪ Simple Web Token (SWT)
▪ Form/URL based format
▪ Very limited possibilities, e.g. only symmetric signatures

▪ JSON Web Token (JWT)
▪ JSON based format
▪ A new format with a strongly increasing prevalence
▪ Lightweight, however quite expressive
▪ But still SAML is much more expressive



 JSON Web Token

 Let’s take a look on https://jwt.io/

https://jwt.io/


 All parts are encoded with Base64url:
 Base64 vs Base64url

▪ Both are intended to encode binary data into ASCII

▪ However, Base64url is intended to be URL safe

▪ „+” is replaced by „-”

▪ „/” is replaced by „_”

▪ Padding „=„ is usually ommitted
▪ optional, but not recommended

 More: http://en.wikipedia.org/wiki/Base64

http://en.wikipedia.org/wiki/Base64


 JSON Web Token, claims
▪ There are 3 sets of claims

▪ Registered in IANA (like iss, iat, exp, …)
▪ Public claim name
▪ Private claim name

▪ Common claims
▪ "iss" (Issuer)
▪ "sub" (Subject)
▪ "aud" (Audience)
▪ "exp" (Expiration Time)
▪ "nbf" (Not Before)
▪ "iat" (Issued At)
▪ "jti" (JWT ID) Claim

 Documentation
▪ http://self-issued.info/docs/draft-ietf-oauth-json-web-token.html

http://self-issued.info/docs/draft-ietf-oauth-json-web-token.html


 More about standards
▪ JSON Web Algorithms (JWA)

▪ Details on algorithms around the JWT, JWS, JWE, JWK

▪ JSON Web Key (JWK)
▪ Data structure represting keys for singing and encryption

▪ JSON Web Token (JWT)
▪ Data structure for representing claims

▪ JSON Web Encryption (JWE)
▪ Encrypted JWT

▪ JSON Web Signature (JWS)
▪ Signed JWT

 Corollary: a JWT on slide 5 was actually JWS



 We consider 2 main approaches for granting
access:

▪ Cookie-based authentication

▪ In a cookie is only session ID

▪ Whole information about an user is in session on a server

▪ Token-based authencation

▪ Whole information about an user is in token

▪ There is no session needed – authN is stateless



 What main arguments do we have for tokens?

▪ Cross-domain

▪ If we use HTTP header, cross domain is easily achievable

▪ Stateless

▪ No session is needed

▪ Single Responsilibity

▪ Granting access process is separated from serving data

▪ There is no coupling between token issuer and consumer

▪ Mobile compatible

▪ Most of current mobile technologies are tokens-oriented



 Let’s imagine the following scenario
▪ You have an account on Google

▪ You found a very fancy calendar application on 
your phone market

▪ You want to use it, but don’t want to give the 
application permission to all Google account data 
(e.g. mails, contacts, etc. – only calendar entries)

 In this scenario we consider 3rd party 
application which is considered as untrusted
▪ And this is the place when the OAuth2 helps



 There is a nice iOS application to show e-mails: GimmeMails
In OAuth2 the flow looks a follows:



In the framework there is a service where you can authenticate,
but in the return application gets an access token which allows

the application to access specific data
There is no user involved after authentication



 Described in RFCs:

▪ The OAuth 2.0 Authorization Framework
▪ https://tools.ietf.org/html/rfc6749

▪ The OAuth 2.0 Authorization Framework: Bearer Token Usage
▪ https://tools.ietf.org/html/rfc6750

▪ OAuth 2.0 Dynamic Client Registration Management Protocol
▪ https://tools.ietf.org/html/rfc7592

▪ OAuth 2.0 Token Introspection
▪ https://tools.ietf.org/html/rfc7662

https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6750
https://tools.ietf.org/html/rfc7592
https://tools.ietf.org/html/rfc7662


 Actors

▪ Resource server

▪ Service which is protected and understands tokens

▪ Resource owner

▪ User

▪ Client

▪ 3rd party application

▪ Authorization server

▪ The one who issues tokens



 Abstract protocol flow



 Client types and profiles

▪ We consider 2 types of clients

▪ Confidential
▪ Take place if client secret is known only for client application

 Especially is not shared with resource owner

▪ Public
▪ The opposite situation



 Client types and profiles

▪ Protocol emphasizes 3 types of clients

▪ Server-side web application

▪ Client-side application running in a web browser

▪ Native application



 Client types and profiles

▪ Protocol emphasizes 3 types of clients

▪ Server-side web application
▪ The application makes API

calls using a server-side
programming language

▪ The user has no access to the 
OAuth client secret or any 
access tokens issued by the 
authorization server

Source: http://tutorials.jenkov.com/oauth2/client-types.html

http://tutorials.jenkov.com/oauth2/client-types.html


 Client types and profiles

▪ Client-side application running in a web browser

▪ The application makes API calls form web browser
technology like JavaScript or Flash

▪ Usually it is a SPA-like app
hosted on web server, but 
run fully in a web browser

Source: http://tutorials.jenkov.com/oauth2/client-types.html

http://tutorials.jenkov.com/oauth2/client-types.html


 Client types and profiles

▪ Native application

▪ Similar solution as client-side application

▪ Usually it is desktop or mobile application

▪ Difference is that everything is
stored on user’s device

Source: http://tutorials.jenkov.com/oauth2/client-types.html

http://tutorials.jenkov.com/oauth2/client-types.html


 Key characteristics
▪ OAuth2 is about authorization
▪ Or, actually, it’s a delegation protocol

▪ Access is granted based on access_token
▪ which doesn’t include anything about identity

▪ Resource owner agrees to share resources with a 
third party application
▪ So called „consent screen”

▪ Client doesn’t get the user’s password in code and 
implicit flows



 Registration
▪ Usually in real world, an application (client) needs to 

register in the resource server
▪ On other words, there is a trust between client and 

resource server, client authenticates in RS
▪ As a outcome, usually client gets

▪ Client ID
▪ Client Secret
▪ Client secret is required only in the confidential clients flows

▪ Additionally with client application a redirect URI is
associated
▪ Used when user (resource owner) successfully authenticates

on authorization server



 Authorization flows

▪ Authorization Code Flow

▪ Implicit Flow

▪ Resource Owner Credential Flow

▪ Client Credential Flow



 Authorization Code Flow

▪ Dedicated for web applications

▪ Client can store secret securely on the server

▪ Access token never sent to a browser

▪ Browser gets a code exchanged later for an access token

▪ Tokens

▪ Access token: short time, gives access to the resource

▪ Refresh token: long time, allows to get a new access token

▪ This is most often used flow



 Authorization Code Flow

https://docs.oracle.com/cd/E39820_01/doc.11121/gateway_docs/content/oauth_flows.html

https://docs.oracle.com/cd/E39820_01/doc.11121/gateway_docs/content/oauth_flows.html


 Implicit Flow

▪ Dedicated to desktop, SPA and mobile 
applications

▪ Very similar to code flow, but there is no code, 
access token is sent directly to device

▪ There is no refresh token



 Implicit Flow

https://docs.oracle.com/cd/E39820_01/doc.11121/gateway_docs/content/oauth_flows.html

https://docs.oracle.com/cd/E39820_01/doc.11121/gateway_docs/content/oauth_flows.html


 Resource Owner Credential Flow
▪ In previous flows authentication is performed on AS

▪ In this case client directly authenticate on AS
▪ Client get the username and password and use it for 

authentication

▪ Client should forget the password after authentication
▪ What means, that client application must be trusted

▪ Authorization response
▪ with access & refresh token

▪ Client app use access token to access resources



 Resource Owner Credential Flow

https://docs.oracle.com/cd/E39820_01/doc.11121/gateway_docs/content/oauth_flows.html

https://docs.oracle.com/cd/E39820_01/doc.11121/gateway_docs/content/oauth_flows.html


 Client Credential Flow

▪ Use for “service to service” communication

▪ Client application itself ask AS for token

▪ Client apps doesn’t do this “on behalf” of some 
user – there is no user involved.

▪ Provided are client_id and client_secret

▪ See example:
http://dev.mendeley.com/reference/topics/authorization_client_credentials.html

http://dev.mendeley.com/reference/topics/authorization_client_credentials.html


 Client Credential Flow

https://docs.oracle.com/cd/E39820_01/doc.11121/gateway_docs/content/oauth_flows.html

https://docs.oracle.com/cd/E39820_01/doc.11121/gateway_docs/content/oauth_flows.html


 Summary of use cases
▪ Web-server applications
▪ Authorization code flow

▪ Browser based applications
▪ Implicit flow

▪ Username/password access
▪ Resource Owner Credential Flow

▪ Mobile applications
▪ Implicit flow

▪ Application access
▪ Client credentials flow



 Why authorization grant flow? Why not just implicit
one?
▪ No need to HTTPS between browser and client
▪ No risk that JavaScript (or whatever else) steal an access

token
▪ Client Secret prevents from malicious app getting access

to data (e.g. by poisoning the DNS)
 On the other hand it is important that in implicit flow

access token is only on client
▪ No risk that any other party of solution with steal an

access token
▪ No risk of man-in-the-middle

▪ The relations is only between client and resource server

http://stackoverflow.com/questions/13387698/why-is-there-an-authorization-code-flow-in-oauth2-when-implicit-flow-works-s
https://salesforce.stackexchange.com/questions/14009/whats-the-benefit-of-the-client-secret-in-oauth2

http://stackoverflow.com/questions/13387698/why-is-there-an-authorization-code-flow-in-oauth2-when-implicit-flow-works-s
https://salesforce.stackexchange.com/questions/14009/whats-the-benefit-of-the-client-secret-in-oauth2


 Scopes
▪ Define what authorizarions will be given

▪ Are expressed as a set of case-sensitive and space-
delimited strings

▪ Should be shared between auth and resource

▪ Example scopes:
▪ Google:
▪ https://www.googleapis.com/auth/analytics

▪ https://www.googleapis.com/auth/calendar

▪ https://www.googleapis.com/auth/gmail.readonly

▪ Facebook: user_friends, email, user_photos, user_posts

https://developers.google.com/identity/protocols/googlescopes
https://developers.facebook.com/docs/facebook-login/permissions/

https://www.googleapis.com/auth/analytics
https://www.googleapis.com/auth/calendar
https://www.googleapis.com/auth/gmail.readonly
https://developers.google.com/identity/protocols/googlescopes
https://developers.facebook.com/docs/facebook-login/permissions/


 What is access token?
▪ There are 2 types of tokens
▪ By value or self-contained, e.g. JWT

▪ By reference, e.g. random string

▪ Which approach is better?
▪ JWT
▪ no need to ask AS, but no way to revoke

 problem with long lived AT, logout operations

▪ By reference
▪ Central management, but there is a need for additional

communication is AS



 Tokens in OAuth2, balanced approach
Internet External Network Internal Network

Web browser Reverse Proxy Web API

By reference
access token

By value
access token

Token
translation



 Let’s play
▪ https://developers.google.com/oauthplayground/

https://developers.google.com/oauthplayground/


 Tokens consideration
▪ https://auth0.com/blog/2014/01/07/angularjs-authentication-with-cookies-vs-token/
▪ https://auth0.com/blog/2014/01/27/ten-things-you-should-know-about-tokens-and-cookies/
▪ http://jpadilla.com/post/73791304724/auth-with-json-web-tokens
▪ http://self-issued.info/docs/draft-ietf-oauth-json-web-token.html
▪ https://developer.atlassian.com/static/connect/docs/concepts/understanding-jwt.html
▪ http://msdn.microsoft.com/en-us/library/gg185950.aspx
▪ http://www.slideshare.net/briandavidcampbell/owasp-vancouver
▪ http://stackoverflow.com/questions/18677837/decoding-and-verifying-jwt-token-using-

system-identitymodel-tokens-jwt
▪ http://dotnetcodr.com/2014/01/20/introduction-to-oauth2-json-web-tokens/

 OAuth2 by Oracle
▪ https://docs.oracle.com/cd/E39820_01/doc.11121/gateway_docs/content/oauth_flows.html

 OAuth2 Threat model and security consideration
▪ https://tools.ietf.org/html/rfc6819

https://auth0.com/blog/2014/01/07/angularjs-authentication-with-cookies-vs-token/
https://auth0.com/blog/2014/01/27/ten-things-you-should-know-about-tokens-and-cookies/
http://jpadilla.com/post/73791304724/auth-with-json-web-tokens
http://self-issued.info/docs/draft-ietf-oauth-json-web-token.html
https://developer.atlassian.com/static/connect/docs/concepts/understanding-jwt.html
http://msdn.microsoft.com/en-us/library/gg185950.aspx
http://www.slideshare.net/briandavidcampbell/owasp-vancouver
http://stackoverflow.com/questions/18677837/decoding-and-verifying-jwt-token-using-system-identitymodel-tokens-jwt
http://dotnetcodr.com/2014/01/20/introduction-to-oauth2-json-web-tokens/
https://docs.oracle.com/cd/E39820_01/doc.11121/gateway_docs/content/oauth_flows.html
https://tools.ietf.org/html/rfc6819

