Pawet Rajba
pawel@cs.uni.wroc.pl
http://itcourses.eu/

Information Systems Security
OAuth2

mailto:pawel.rajba@gmail.com
http://kursy24.eu/

Agenda

Security tokens
Tokens history

JSON Web Token
Why tokens?
OAuth2?

Actors

Client types and profiles
Registration

Authorization flows

Security tokens

A data structure with the following features

Contains information about an issuer and a
subject, usually with expiration date

Signed, sometimes also encrypted

Typical roles
A client requests a token
An issuer issues a token

A service consumes a token
There is a trust between the issuer and the service

Security tokens

Tokens history

SAML 1.1/2.0
XML based format
Very expressive with many options, including security
Popular in SOAP services

Simple Web Token (SWT)

Form/URL based format

Very limited possibilities, e.g. only symmetric signatures
JSON Web Token (JWT)

JSON based format

A new format with a strongly increasing prevalence

Lightweight, however quite expressive
But still SAML is much more expressive

Security tokens

JSON Web Token

Encoded Decoded

eyJhbGci0iJIUzITNiIsInR5cCI6IkpXVCJY.eyJz
dWIi0iIxMjMONTY30DkwIiwibmFtZSI6IkpvaG4gR L -
G91IiwiYWRtaW4iOnRydWV9, t | vT -

Let’s take a look on https://jwt.io/

https://jwt.io/

Security tokens

All parts are encoded with Base64url:
Base6y4 vs Base64url

Both are intended to encode binary data into ASCI|
However, Base64url is intended to be URL safe

.+"isreplaced by ,-"
.[" is replaced by ,,_"

Padding ,=, is usually ommitted
optional, but not recommended

More: http://en.wikipedia.org/wiki/Base64

http://en.wikipedia.org/wiki/Base64

Security tokens

JSON Web Token, claims

There are 3 sets of claims
Registered in IANA (like iss, iat, exp, ...)
Public claim name
Private claim name

Common claims
"iss" (Issuer)
"sub" (Subject)
"aud" (Audience)
"exp" (Expiration Time)
"nbf" (Not Before)
"iat" (Issued At)
"jti" (JWT ID) Claim
Documentation

http://self-issued.info/docs/draft-ietf-oauth-json-web-token.html

http://self-issued.info/docs/draft-ietf-oauth-json-web-token.html

Security tokens

More about standards
JSON Web Algorithms (JWA)
Details on algorithms around the JWT, JWS, JWE, JWK
JSON Web Key (JWK)

Data structure represting keys for singing and encryption

JSON Web Token (JWT)
Data structure for representing claims
JSON Web Encryption (JWE)
Encrypted JWT
JSON Web Signature (JWS)

Signed JWT
Corollary a JWT on slide 5 was actually JWS

Why tokens?

We consider 2 main approaches for granting
access:
Cookie-based authentication

In a cookie is only session ID

Whole information about an user is in session on a server

Token-based authencation
Whole information about an user is in token
There is no session needed — authN is stateless

Why tokens?

What main arguments do we have for tokens?

Cross-domain

If we use HTTP header, cross domain is easily achievable

Stateless
No session is needed
Single Responsilibity
Granting access process is separated from serving data

There is no coupling between token issuer and consumer

Mobile compatible
Most of current mobile technologies are tokens-oriented

Let's imagine the following scenario
You have an account on Google

You found a very fancy calendar application on
your phone market

You want to use it, but don’t want to give the
application permission to all Google account data
(e.g. mails, contacts, etc. —only calendar entries)

In this scenario we consider 3rd party
application which is considered as untrusted

And this is the place when the OAuth2 helps

There is a nice iOS application to show e-mails: GimmeMails
In OAuth2 the flow looks a follows:

1. Send Credentials
|

e 2. Get access token

«

3. Send request O\
with access token \

4. Get e-mails { \{ \{ a.\\h

In the framework there is a service where you can authenticate,
but in the return application gets an which allows
the application to access specific data

There is no user involved after authentication

Described in RFCs:

The OAuth 2.0 Authorization Framework
https://tools.ietf.org/html/rfc6749

The OAuth 2.0 Authorization Framework: Bearer Token Usage
https://tools.ietf.org/html/rfc6750

OAuth 2.0 Dynamic Client Registration Management Protocol
https://tools.ietf.org/html/rfc7592

OAuth 2.0 Token Introspection
https://tools.ietf.org/html/rfc7662

https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6750
https://tools.ietf.org/html/rfc7592
https://tools.ietf.org/html/rfc7662

Actors

Resource server

Service which is protected and understands tokens

Resource owner

User
Client

3rd party application
Authorization server

The one who issues tokens

Abstract protocol flow

fomm et fommmmmmmm e -+
	--(A)- Authorization Request -» Rezource
	Owner
	<-(B)-- Authorization Grant ---
	Y e et -+

| | e e -+
	--(C)-- Authorization Grant --»	Authorization
Client	Server	
	<-(Dy----- Access Token -------	
	e e -+	

| | Y e et -+
	--(E)----- Access Token ------ > Resource
	server
	<-(F)--- Protected Resource ---
$ommmm a4 fommmmm e -+

Client types and profiles

We consider 2 types of clients

Confidential

Take place if client secret is known only for client application
Especially is not shared with resource owner

Public

The opposite situation

Client types and profiles

Protocol emphasizes 3 types of clients
Server-side web application
Client-side application running in a web browser
Native application

Client types and profiles

Protocol emphasizes 3 types of clients

Server-side web application

The application makes API
calls using a server-side
programming language

The user has no access to the
OAuth client secret or any &
access tokens issued by the

authorization server Resource
Dwner

Source: http://tutorials.jenkov.com/oauth2/client-types. html

Confidential Client:
Web Application

L

Client Password

Resource
Server

-
‘

_,.E.
Authorization
Server

http://tutorials.jenkov.com/oauth2/client-types.html

Client types and profiles

Client-side application running in a web browser

The application makes API calls form web browser
technology like JavaScript or Flash

Usually it is a SPA-like app ebsTe posting - Resouee

hosted on web server, but Fubiic Client .
_ ser Agent ; —

run fully in a web browser Applicafion el E

-
A

o S
Res@urce Chent 1D _}'El

Owner Client Password

Source: http://tutorials.jenkov.com/oauth2/client-types. html Aug‘gﬁeﬂ:' on

http://tutorials.jenkov.com/oauth2/client-types.html

Client types and profiles
Native application

Similar solution as client-side application
Usually it is desktop or mobile application

Difference is that everything is
/ . Public Client:
stored on user’s device Native Appiication

&
R <

Resource
Server

-

-
A

Resﬂurce Client 1D
Owner Client Passwaord

Source: http://tutorials.jenkov.com/oauth2/client-types. html

L E.
Autharization
Server

http://tutorials.jenkov.com/oauth2/client-types.html

Key characteristics
OAuth2 is about authorization

Or, actually, it's a delegation protocol

Access is granted based on access_token
which doesn't include anything about identity

Resource owner agrees to share resources with a
third party application
So called ,, consent screen”

Client doesn’t get the user’s password in code and
implicit flows

Registration

Usually in real world, an application (client) needs to
register in the resource server

On other words, there is a trust between client and
resource server, client authenticates in RS

As a outcome, usually client gets
Client ID
Client Secret
Client secret is required only in the confidential clients flows
Additionally with client application a redirect URI is
associated

Used when user (resource owner) successfully authenticates
on authorization server

Authorization flows

Authorization Code Flow
Implicit Flow

Resource Owner Credential Flow
Client Credential Flow

Authorization Code Flow

Dedicated for web applications
Client can store secret securely on the server

Access token never sent to a browser
Browser gets a code exchanged later for an access token

Tokens
Access token: short time, gives access to the resource
Refresh token: long time, allows to get a new access token

This is most often used flow

Auth2

Authorization Code Flow

Web Server

User UserAgent (Browser) Authorization Server Resource Server

(Client App)

Enter URL

Open URL e

Start QAuth Process :

g Redirect 1o AuthZ Server
I's

Opens redirect URL >
|
Present Authorization UT

A

< Present Authorization Ul

Present credentials and authorise or deny,
»

Present submitted data from user
Verify and create Authorization code :

Redirect to Web Server with Authorization Code

<
Follow redirect to Web Server,
Present Authorization Code >
b Return Access Token
-4
Call protected resource with Access Token ~
| L
< Return protected resource |

Web Server

UserAgent (Browser) Authorization Server

(Client App)

https://docs.oracle.com/cd/E39820 o1/doc.11121/gateway docs/content/oauth flows.html

https://docs.oracle.com/cd/E39820_01/doc.11121/gateway_docs/content/oauth_flows.html

Implicit Flow
Dedicated to desktop, SPA and mobile
applications

Very similar to code flow, but there is no code,
access token is sent directly to device

There is no refresh token

Auth2

Implicit Flow

m User Agent (Browser) Javascript client Authorization Server Web Server

Enters LIRL

Page with jevesipl

.
-

Execute javascipt :

- Redirect tz AUthZ respanse_type=token

Opens redirect URL
Present Authorization UL

k J

]
Presant Authorzation U1

-

Presant credentels end authorse or ﬂerr,'h_
Frasent subrrited data fram uses .

L

Verify and create Access Token :

Redirect o Web Server with Access Token In # fragment

il
-

Flow redirect by Web Server with oul lragrment

L 2

o2 wikh javascript
- = =

Extract access token fram fragment :'

Call protected recouree with Access Token

.
-

Return protected resource

E
m User Agent (Browser) Javascript client Authorization Server Web Server

https://docs.oracle.com/cd/E39820 o1/doc.11121/gateway docs/content/oauth flows.html

https://docs.oracle.com/cd/E39820_01/doc.11121/gateway_docs/content/oauth_flows.html

Resource Owner Credential Flow

In previous flows authentication is performed on AS

In this case client directly authenticate on AS

Client get the username and password and use it for
authentication

Client should forget the password after authentication
What means, that client application must be trusted

Authorization response
with access & refresh token

Client app use access token to access resources

Resource Owner Credential Flow

Resource Owner Password Credentials flow

>

Resource Owner's cradentials

Resource Owner's credentials

-
Autherticate Resource Owner :)

authenticate Client :)

Access token with optional refresh token

-

Access protected resource with access token >

Protectad resource response

-4

https://docs.oracle.com/cd/E39820 o1/doc.11121/gateway docs/content/oauth flows.html

https://docs.oracle.com/cd/E39820_01/doc.11121/gateway_docs/content/oauth_flows.html

Client Credential Flow

Use for “service to service” communication

Client application itself ask AS for token

Client apps doesn’t do this “on behalf” of some
user —there is no user involved.
Provided are client_id and client_secret

See example:

http://dev.mendeley.com/reference/topics/authorization client credentials.html

http://dev.mendeley.com/reference/topics/authorization_client_credentials.html

Client Credential Flow

Client

Client Credentials flow

Authorization Server

Client credentials

> Access token with NO refresh token

-

Authenticate Client :

Access protected resource with access token

Resource Server

-

]
Protected resource response

Client

Authorization Server

Resource Server

>

https://docs.oracle.com/cd/E39820 o1/doc.11121/gateway docs/content/oauth flows.html

https://docs.oracle.com/cd/E39820_01/doc.11121/gateway_docs/content/oauth_flows.html

Summary of use cases
Web-server applications
Authorization code flow
Browser based applications
Implicit flow
Username/password access
Resource Owner Credential Flow
Mobile applications
Implicit flow

Application access
Client credentials flow

Why authorization grant flow? Why not just implicit
one?
No need to HTTPS between browser and client
No risk that JavaScript (or whatever else) steal an access
token

Client Secret prevents from malicious app getting access
to data (e.g. by poisoning the DNS)
On the other hand it is important that in implicit flow

access token is only on client

No risk that any other party of solution with steal an
access token

No risk of man-in-the-middle
The relations is only between client and resource server

http://stackoverflow.com/questions/13387698/why-is-there-an-authorization-code-flow-in-oauth2-when-implicit-flow-works-s
https://salesforce.stackexchange.com/questions/14009/whats-the-benefit-of-the-client-secret-in-oauth2

http://stackoverflow.com/questions/13387698/why-is-there-an-authorization-code-flow-in-oauth2-when-implicit-flow-works-s
https://salesforce.stackexchange.com/questions/14009/whats-the-benefit-of-the-client-secret-in-oauth2

Scopes
Define what authorizarions will be given

Are expressed as a set of case-sensitive and space-
delimited strings

Should be shared between auth and resource

Example scopes:
Google:
https://www.googleapis.com/auth/analytics
https://www.googleapis.com/auth/calendar

https://www.googleapis.com/auth/gmail.readonly
Facebook: user_friends, email, user_photos, user_posts

https://developers.qoogle.com/identity/protocols/qooglescopes
https://developers.facebook.com/docs/facebook-login/permissions/

https://www.googleapis.com/auth/analytics
https://www.googleapis.com/auth/calendar
https://www.googleapis.com/auth/gmail.readonly
https://developers.google.com/identity/protocols/googlescopes
https://developers.facebook.com/docs/facebook-login/permissions/

What is access token?

There are 2 types of tokens
By value or self-contained, e.g. JWT
By reference, e.g. random string

Which approach is better?
JWT

no need to ask AS, but no way to revoke
problem with long lived AT, logout operations
By reference

Central management, but there is a need for additional
communication is AS

Tokens in OAuth2, balanced approach

Internet External Network Internal Network
Token
By reference translation By value

access token

:

Web browser Reverse Proxy Web API

access token

Let's play

https://developers.google.com/oauthplayground/

https://developers.google.com/oauthplayground/

References

Tokens consideration
https://autho.com/blog/2014/01/07/anqularjs-authentication-with-cookies-vs-token/
https://autho.com/blog/2014/01/27/ten-things-you-should-know-about-tokens-and-cookies/
http://ipadilla.com/post/73791304724/auth-with-json-web-tokens
http://self-issued.info/docs/draft-ietf-oauth-json-web-token.html
https://developer.atlassian.com/static/connect/docs/concepts/understanding-jwt.html
http://msdn.microsoft.com/en-us/library/qg185950.aspx
http://www.slideshare.net/briandavidcampbell/owasp-vancouver

http://stackoverflow.com/questions/18677837/decoding-and-verifying-jwt-token-using-
system-identitymodel-tokens-jwt

http://dotnetcodr.com/2014/01/20/introduction-to-oauth2-json-web-tokens/
OAuth2 by Oracle

https://docs.oracle.com/cd/E39820 o1/doc.11121/gateway docs/content/oauth flows.html
OAuth2 Threat model and security consideration

https://tools.ietf.org/html/rfc6819

https://auth0.com/blog/2014/01/07/angularjs-authentication-with-cookies-vs-token/
https://auth0.com/blog/2014/01/27/ten-things-you-should-know-about-tokens-and-cookies/
http://jpadilla.com/post/73791304724/auth-with-json-web-tokens
http://self-issued.info/docs/draft-ietf-oauth-json-web-token.html
https://developer.atlassian.com/static/connect/docs/concepts/understanding-jwt.html
http://msdn.microsoft.com/en-us/library/gg185950.aspx
http://www.slideshare.net/briandavidcampbell/owasp-vancouver
http://stackoverflow.com/questions/18677837/decoding-and-verifying-jwt-token-using-system-identitymodel-tokens-jwt
http://dotnetcodr.com/2014/01/20/introduction-to-oauth2-json-web-tokens/
https://docs.oracle.com/cd/E39820_01/doc.11121/gateway_docs/content/oauth_flows.html
https://tools.ietf.org/html/rfc6819

