
Paweł Rajba
pawel@cs.uni.wroc.pl
http://itcourses.eu/

mailto:pawel.rajba@gmail.com
http://kursy24.eu/

 Introduction
 Data consistency
 Data access control
 Data encryption
▪ In storage

▪ In transit
 Data availability
▪ Backup and restore strategy

▪ Transaction log strategy
 Auditing
 Policies

 SQL Server is a DBMS
 It evolved for many years

and now is a mature
product on the market

 One can install many
instances on one server

▪ Only one is the default

▪ Others are named

 Main services for the default instance
▪ MSSQLServer

▪ SQLServerAgent
 … and for a named instance
▪ MSSQLServer$instanceName

▪ SQLServerAgent$instanceName
 Main tools
▪ Microsoft SQL Server Management Studio

▪ SQL Server Profiler

 There 2 types of databases
▪ System and user

 System databases
▪ master

▪ Information about databases, its file locations
▪ Account information and other like endpoints, configuration, etc.

▪ tempdb
▪ Temporary workspace, used to processing queries, etc.
▪ After restart restored on the basis on model database

▪ msdb
▪ SQLServerAgent service database
▪ Includes information about job schedules, alerts, etc.

▪ model
▪ Database template

https://docs.microsoft.com/en-us/sql/relational-databases/databases/system-databases

https://docs.microsoft.com/en-us/sql/relational-databases/databases/system-databases

 Database files
▪ Main files – *.mdf

▪ Secondary – *.ndf

▪ Transaction log – *.ldf
 Transaction log and recovery model
▪ Full

▪ Bulk-logged
▪ Like full, but excluded bulk operations,

e.g. bulk, select..into, create index, writetext, updatetext

▪ Simple

 Authentication modes

▪ Windows

▪ Mixed mode

 We consider security in the following areas
▪ Data consistency

▪ Data access control

▪ Data encryption
▪ In storage

▪ In transit

▪ Data availability
▪ Backup and restore strategy

▪ Transaction log strategy

▪ Auditing

▪ Policies

 Secured by ACID property of transactions
 Right choice of isolation level
 Is that enough?

▪ What about business rules?

▪ Where are they implemented and where is the
validation executed?

 Transactional vs. eventual consistency

 Scopes

▪ Server level

▪ Database level

▪ Schema level

 Principals

▪ Entity who wants access to a resource

 Securables

▪ Resources that can be requested by principles

 Server-level principles (logins)
▪ SQL Server authentication Login
▪ Server role
▪ Windows authentication login for a Windows user
▪ Windows authentication login for a Windows group

 Every login has a SID
 Can be created…
▪ In MGMT studio (Security → Logins)
▪ CREATE LOGIN statement

 Some options
▪ MUST_CHANGE, DEFAULT_DATABASE = "…",

CHECK_EXPIRATION = ON, CHECK_POLICY = ON

https://docs.microsoft.com/pl-pl/sql/relational-databases/security/authentication-access/principals-database-engine

https://docs.microsoft.com/pl-pl/sql/relational-databases/security/authentication-access/principals-database-engine

 Database-level principals users
▪ Database User (there are many types)

▪ Database Role

▪ Application Role
 Basic operations:
▪ CREATE USER [TestUser] FOR LOGIN

[CustomUser] WITH DEFAULT SCHEMA=[dbo]
▪ After user is created there is no permission associated

▪ ALTER USER [TestUser] WITH login = [NewLogin]
▪ Useful when we attached database

https://docs.microsoft.com/pl-pl/sql/relational-databases/security/authentication-access/principals-database-engine

https://docs.microsoft.com/pl-pl/sql/relational-databases/security/authentication-access/principals-database-engine

 Special principals
▪ sa (login)

▪ System administrator with full power
▪ Member of the sysadmin fixed role

▪ dbo (db user)
▪ Stands for database owner
▪ Alias to the database owner when connected

▪ public (login, db user)
▪ Assigned to every login (on server) and every user (on db)
▪ Cannot be removed, but one can change the permissions

▪ It is recommended to not add deny, because it affects all users

▪ guest
▪ Present in every database
▪ Permissions granted to the guest user are inherited by users who have access to

the database, but who do not have a user account in the database

https://docs.microsoft.com/pl-pl/sql/relational-databases/security/authentication-access/principals-database-engine

https://docs.microsoft.com/pl-pl/sql/relational-databases/security/authentication-access/principals-database-engine

 Server-Roles
▪ There are 2 types
▪ 9 fixed server roles (builtin)
▪ sysadmin, serveradmin, securityadmin, processadmin, setupadmin,

bulkadmin, diskadmin, dbcreator, public
▪ The permissions that are granted cannot be changed

▪ Custom server roles
▪ Basic operations:

 CREATE SERVER ROLE [SomeRole]
 It is possibility to create custom server roles

 ALTER SERVER ROLE [sysadmin] ADD MEMBER [auser]

▪ List of permissions for a role
▪ sp_srvrolepermission 'securityadmin'

https://docs.microsoft.com/pl-pl/sql/relational-databases/security/authentication-access/server-level-roles

https://docs.microsoft.com/pl-pl/sql/relational-databases/security/authentication-access/server-level-roles

https://docs.microsoft.com/pl-pl/sql/relational-databases/security/authentication-access/server-level-roles

https://docs.microsoft.com/pl-pl/sql/relational-databases/security/authentication-access/server-level-roles

 Database roles
▪ There are 2 types:

▪ Fixed (predefined)
▪ db_owner, db_securityadmin, db_accessadmin, db_backupoperator,

db_ddladmin, db_datawriter, db_datareader, db_denydatawriter,
db_denydatareader

▪ Permissions that are granted cannot be changed
▪ List of permissions for role:

 sp_dbfixedrolepermission rolename

▪ Flexible (defined by user)
▪ How to manage roles?

 From SQL
 CREATE ROLE rolename
 ALTER ROLE rolename {ADD|DROP} MEMBER {username|rolename}

 From MGMT Studio

https://docs.microsoft.com/pl-pl/sql/relational-databases/security/authentication-access/database-level-roles

https://docs.microsoft.com/pl-pl/sql/relational-databases/security/authentication-access/database-level-roles

https://docs.microsoft.com/pl-pl/sql/relational-databases/security/authentication-access/database-level-roles

https://docs.microsoft.com/pl-pl/sql/relational-databases/security/authentication-access/database-level-roles

 Application roles
▪ Gives possibility to assign permission to a specific

application
▪ A scenario
▪ A user executes a client application.
▪ The client application connects to an instance of SQL Server

as the user.
▪ The application then executes the sp_setapprole stored

procedure with a password known only to the application.
▪ If the application role name and password are valid, the

application role is enabled.
▪ At this point the connection loses the permissions of the user

and assumes the permissions of the application role.

https://docs.microsoft.com/pl-pl/sql/relational-databases/security/authentication-access/application-roles

https://docs.microsoft.com/pl-pl/sql/relational-databases/security/authentication-access/application-roles

 In general
▪ Complete structure of tables (objects) and relationship

 In SQL Server
▪ Collection of objects within a database
▪ Database can have many schemas

 Basic operation:
▪ CREATE SCHEMA <Warehouse>

[AUTHORIZATION <User>]
▪ Authorization defines an owner

▪ Accesing schemas: [schema].[object]
▪ E.g. CREATE TABLE [Warehouse].[Invoice] (…)

▪ Default schema: [dbo] (owned by dbo)
▪ Changing a schema

▪ ALTER SCHEMA NewSchema TRANSFER dbo.Person

 Normally, every statement is executed in the
context of the connected user

 Impersonation can be achieved by EXEC AS

▪ EXECUTE AS {LOGIN | USER} = 'name'

 Return to the original context

▪ REVERT

https://docs.microsoft.com/pl-pl/sql/relational-databases/security/permissions-hierarchy-database-engine

https://docs.microsoft.com/pl-pl/sql/relational-databases/security/permissions-hierarchy-database-engine

 Managing permissions
▪ From MGMT Studio

▪ Open Database properties
▪ Change tab to permissions

▪ From SQL (there are much more syntax)
▪ GRANT { ALL [PRIVILEGES] }

| permission [(column [,...n])] [,...n]
[ON [class ::] securable] TO principal [,...n]
[WITH GRANT OPTION] [AS principal]

▪ REVOKE
<permission> [,...n]
[ON [<class_type> ::] securable]
[FROM | TO] principal [,...n]
[CASCADE]

▪ DENY { ALL [PRIVILEGES] }
| permission [(column [,...n])] [,...n]
[ON [class ::] securable] TO principal [,...n]
[CASCADE] [AS principal]

https://docs.microsoft.com/en-us/sql/t-sql/statements/statements

https://docs.microsoft.com/en-us/sql/t-sql/statements/statements

https://docs.microsoft.com/pl-pl/sql/relational-databases/security/permissions-database-engine

https://docs.microsoft.com/pl-pl/sql/relational-databases/security/permissions-database-engine

 Basic information

▪ master.sys.syslogins

▪ db.sys.sysusers

▪ db.sys.database_principals

▪ db.sys.database_permissions

▪ db.sys.database_role_members

 Look at permissions:

▪ fn_my_permissions

 Every securable has an owner
▪ Owner can do everything with an object

▪ Anyone can revoke owner’s privileges

▪ User can’t be dropped if it owns something
 By default an owner of an object is a database

owner
 Changing ownership
▪ ALTER AUTHORIZATION ON <Object> TO <User>

▪ More:
▪ http://msdn.microsoft.com/en-us/library/ms187359.aspx

http://msdn.microsoft.com/en-us/library/ms187359.aspx

 Access in chain (referenced objects) is verified
differently than in separated objects

▪ If a referenced object has the same owner as the
source object, permissions are not checked

▪ If a procedure references a table and owners are
the same, table permissions are not checked

▪ Ownership chaining doesn’t apply to dynamic
SQL (in such case all permissions must be
explicitly granted)

 In other words:

▪ Let’s assume that there is a chain of calls
O1→O2→O3→…→On
and all Oi has the same owner

▪ Then permissions are checked only on access to O1

 Let’s see the consequences

 Practical example: roles usage

▪ There is default good way to give an EXECUTE
permission to a user

▪ The solution
▪ CREATE ROLE db_executor
GRANT EXECUTE TO db_executor
EXEC sp_addrolemember 'db_executor', 'username'

 Practical example: the ownership chain consequences
CREATE TABLE SomeData (Number INT)
GO

CREATE PROCEDURE ShowSomeData AS SELECT * FROM SomeData
GO

--ALTER AUTHORIZATION ON SomeData TO dbo --SCHEMA OWNER
--ALTER AUTHORIZATION ON ShowSomeData TO dbo --SCHEMA OWNER
--GO

SELECT * FROM sys.all_objects WHERE name LIKE '%SomeData'
GO

GRANT EXECUTE ON ShowSomeData TO Test
DENY SELECT ON SomeData TO Test
GO

EXECUTE AS USER = 'Test'
GO
SELECT * FROM SomeData
GO
EXEC ShowSomeData
GO
REVERT
GO

 There are situations in which protecting
access to a database is not enough
▪ Someone breaches access level protection

▪ Access rights are assigned in a wrong way

▪ Backup files are stolen

▪ Protection of a filesystem is compromised

▪ And many others...
 If we have a very sensitive data, encryption in

a database is a one more layer of defense

 Encryption can be
achieved through
different ways

 Every way is implied by
a different chain of keys

 Every way has pros and
cons, so should be
evaluated according to
the requirements

More:

http://technet.microsoft.com/en-us/library/ms189586(v=sql.110).aspx

http://technet.microsoft.com/en-us/library/ms189586(v=sql.110).aspx

 Asymmetric Keys
 Symmetric Keys
 Certificates
 Extensible Key Management (EKM)

▪ Since SQL Server 2008

▪ Gives a possibility to manage keys by an external
source such as Hardware Security Module (HSM)

 Column Enryption: data is encrypted explicitly

▪ Applications and users are impacted

▪ One can choose what exactly should be encrypted
– no overhead for encryption less sensitive data

 TDE: the whole database is encrypted

▪ Encryption is hidden and transparent, so if one can
connect, one can see the data

▪ Everything is encrypted, also less sensitive data

 The choice depends on business needs

 This is supported by set of built-in functions and procedures
together with key hierarchy

 Operations are performed manually
 Encrypted data needs to be stored in a varbinary column type
 Main steps

▪ Create database master key for every database
▪ Notice: service master key has been created when the instance has been created

▪ Create a certificate to protect keys
▪ Create a symmetric key which is protected by the certificate created in

the previous step
▪ Enjoy encrypting data: open the symmetric key, encrypt the data, close

the key
 Decryption is similar to encryption, but a function for decryption

should be used

USE Test

CREATE TABLE Person
(

ID INT PRIMARY KEY,
FirstName VARCHAR(50),
LastName VARCHAR(50),
CreditCard VARBINARY(200)

)
GO

INSERT INTO Person (ID, FirstName, LastName) VALUES(1, 'J1', 'K1');
INSERT INTO Person (ID, FirstName, LastName) VALUES(2, 'J1', 'K1');
INSERT INTO Person (ID, FirstName, LastName) VALUES(3, 'J1', 'K1');
GO

CREATE MASTER KEY ENCRYPTION BY PASSWORD='SomePassword'
GO

CREATE CERTIFICATE CertForTest WITH SUBJECT='Test'
GO

CREATE SYMMETRIC KEY CreditCardKey WITH ALGORITHM=AES_256 ENCRYPTION BY CERTIFICATE CertForTest
GO

OPEN SYMMETRIC KEY CreditCardKey DECRYPTION BY CERTIFICATE CertForTest
UPDATE Person SET CreditCard = ENCRYPTBYKEY(KEY_GUID('CreditCardKey'), '11111') WHERE ID=1;
UPDATE Person SET CreditCard = ENCRYPTBYKEY(KEY_GUID('CreditCardKey'), '22222') WHERE ID=2;
UPDATE Person SET CreditCard = ENCRYPTBYKEY(KEY_GUID('CreditCardKey'), '33333') WHERE ID=3;
CLOSE SYMMETRIC KEY CreditCardKey
GO

SELECT * FROM Person
GO

OPEN SYMMETRIC KEY CreditCardKey DECRYPTION BY CERTIFICATE CertForTest
SELECT ID, FirstName, LastName, CONVERT(VARCHAR, DECRYPTBYKEY(CreditCard)) [Credit Card] FROM Person
CLOSE SYMMETRIC KEY CreditCardKey
GO

 TDE is one of usages of encryption by symmetric keys
 There is whole database encrypted by a symmetric key called

database encryption key
 Database encryption key is protected by certificate which is

protected by database master key or asymmetric key from EKM
 Available only on Enterprise Edition or Developer Edition
 Provides query optimization
 Main steps

▪ Create master key encryption password
▪ Create a certificate
▪ Backup the certificate
▪ Create a database encryption symmetric key
▪ Alter the database to set encryption on
▪ Optionally monitor the encryption process

 More: http://msdn.microsoft.com/en-us/library/bb934049.aspx

http://msdn.microsoft.com/en-us/library/bb934049.aspx

USE master

CREATE MASTER KEY ENCRYPTION BY PASSWORD='SomePassword'
GO

CREATE CERTIFICATE TestDatabaseServerCertificate WITH SUBJECT='Test Certificate'
GO

BACKUP CERTIFICATE TestDatabaseServerCertificate
TO FILE ='C:\Temp\TestDatabaseServerCertificate'
WITH PRIVATE KEY(

FILE = 'C:\Temp\TestDatabaseServerCertificate.private',
ENCRYPTION BY PASSWORD = 'AnotherPassword')

USE Test

CREATE DATABASE ENCRYPTION KEY WITH ALGORITHM = AES_128
ENCRYPTION BY SERVER CERTIFICATE TestDatabaseServerCertificate
GO

ALTER DATABASE Test SET ENCRYPTION ON
GO

SELECT DB_NAME(database_id), encryption_state, key_algorithm, key_length
FROM sys.dm_database_encryption_keys
GO

 There are many available algorithms:

▪ DES, Triple DES, TRIPLE_DES_3KEY, RC2, RC4,
128-bit RC4, DESX, 128-bit AES, 192-bit AES,
256-bit AES and more

 However, other than
AES_128, AES_192, and AES_256
are considered as deprecated

 When it comes to communication we consider two
challenges
▪ Storing credentials to a database server in a secure way

▪ This was covered in OWASP Top 10 topic

▪ Encrypting communication channel
▪ SQL Server supports encrypting connection using TLS

▪ A valid certificate is required

▪ DEMO
▪ Open: Configuration Tools→ SQL Server Configuration Manager
▪ Open: Properties for SQL Server Network Configuration

▪ More
▪ https://docs.microsoft.com/en-us/sql/database-engine/configure-

windows/enable-encrypted-connections-to-the-database-engine
▪ http://technet.microsoft.com/en-us/library/ms189067(v=sql.105).aspx

https://docs.microsoft.com/en-us/sql/database-engine/configure-windows/enable-encrypted-connections-to-the-database-engine
http://technet.microsoft.com/en-us/library/ms189067(v=sql.105).aspx

 Available since SQL Server 2016
 Combines encryption both in storage and transit
 Encryption/decryption executed on client

▪ Requires .NET 4.6 SQL Client Driver
 Column level encryption

▪ Spefic columns need to be selected
 Types of encryption

▪ Deterministic: the same ciphertext for the same values
▪ One can benefit from equality joins, grouping, indexing, etc.
▪ … but it is less secure, e.g. columns is limited set of values like True/False,

North/South/East/West values can be discovered

▪ Randomized: different ciphertexts for different values
▪ More secure, but one can’t benefit from making operation on a database

 Transparent for the applications
▪ Driver will handle the traffic „on the fly”
▪ A section: Column Encryption Setting=Enabled

needs to be added to the connection string

https://docs.microsoft.com/pl-pl/sql/relational-databases/security/encryption/always-encrypted-database-engine

https://docs.microsoft.com/pl-pl/sql/relational-databases/security/encryption/always-encrypted-database-engine

 It is a mechanism which allows to monitor who
is doing what on which objects

 There a lot of possibilities what can be audited
 It is based on Extended Events, new feature

since SQL Server 2008

▪ Audit is specialized usage of Extended Events

 DEMO: Let’s create Server-Level audit
▪ MGMT → Security →Audits
▪ Create an audit DatabaseRoleMemberChange

▪ MGMT → Security → Server Audit Specifications
▪ Create a specification DatabaseRoleMemberChange related

to DatabaseRoleMemberChange event

▪ Add any user to any role
▪ USE Test; ALTER ROLE db_owner ADD MEMBER test

▪ MGMT → Security →Audits
▪ Pick the audit

▪ Choose View Audits Logs option

 DEMO: Let’s create Database-Level audit
▪ MGMT → Security →Audits
▪ Create TestDatabaseSelect audit

▪ MGMT →Test database→ Security →
Server Audit Specification
▪ Create TestDatabaseSelect specification on
▪ SELECT event

▪ Osoba table

▪ [public] role

▪ Perform a select on the Osoba table in Test DB

▪ View TestDatabaseSelect audit

 There is another way to see audit entries
which is based on review files

 DEMO
▪ SELECT * INTO Test.dbo.SQLAudits
FROM sys.fn_get_audit_file(

'C:\Temp\TestDatabase*.sqlaudit',Default, Default);

▪ SELECT * FROM Test.dbo.SQLAudits

 Allows to apply and force policies and rules
 Three main components

▪ Policy management. Policy administrators create policies.
▪ Explicit administration. Administrators select one or more

managed targets and explicitly check that the targets comply
with a specific policy, or explicitly make the targets comply with
a policy.

▪ Evaluation modes. There are four evaluation modes:
▪ On demand. This mode evaluates the policy when directly specified by

the user.
▪ On change: prevent. This automated mode uses DDL triggers to

prevent policy violations.
▪ On change: log only. This automated mode uses event notification to

evaluate a policy when a relevant change is made.
▪ On schedule. This automated mode uses a SQL Server Agent job to

periodically evaluate a policy.
https://docs.microsoft.com/en-us/sql/relational-databases/policy-based-management/administer-servers-by-using-policy-based-
management

https://docs.microsoft.com/en-us/sql/relational-databases/policy-based-management/administer-servers-by-using-policy-based-management

 Let’s see some examples
▪ MGMT →Management → Policy Management

▪ Review Facets

▪ Create a policy RecoveryModelFull for ensuring that every
database has a full recovery model
▪ Create a condition using Database Options facet

▪ Create a policy based on that condition and evaluate it

▪ Create a policy for ensuring that no table is created in dbo
schema (do the same for procedure)
▪ Create a condition using Table facet (analogously Stored Procedure)

▪ Create a policy based on that condition and evaluate it

▪ Try to enable that policy and try to create an object in that schema
▪ E.g. CREATE PROCEDURE dbo.GetServerName AS SELECT @@SERVERNAME

 Data can be lost

▪ By accident (someone forget WHERE clause when
DELETE, click a wrong button)

▪ By WANNACRY (or any other malicious crap)

▪ Natural disasters

▪ Theft, robbery

▪ … many others

 Making backups is one of ways to mitigate
the data lost

 Questions need to be answer for backups:
▪ Which databases to backup?

▪ How often to do that? How often data are
modified?

▪ What is acceptable period of data loss?

▪ How fast we need data back after failure?
▪ Disk vs. Tape

▪ Where to store backups?
▪ It should be different location?

▪ How backups are protected?

 Main types of backups
▪ Full

▪ Differential backups

▪ Transaction log backups
 There are also
▪ File backups

▪ Filegroup backups

▪ Partial backups
 To make differential and transaction log backup you need
▪ Full backup

▪ Correct sequence of differential or transaction log backups

 Very important thing:

Test your backup by regular restoration

 High Availability

▪ Failover clustering

▪ Database mirroring

▪ Log shipping

▪ Replication

 Documentation from Microsoft
▪ https://docs.microsoft.com/pl-pl/sql/relational-databases/security/security-center-for-sql-server-database-

engine-and-azure-sql-database
 Who is the Default Owner of your Database and Server Objects?

▪ http://sqlity.net/en/2180/default-owner/
 Schema-Based Access Control for SQL Server Databases

▪ https://www.simple-talk.com/sql/sql-training/schema-based-access-control-for-sql-server-databases/
 Understanding SQL Server fixed database roles

▪ https://www.mssqltips.com/sqlservertip/1900/understanding-sql-server-fixed-database-roles/
 System Compatibility Views (Transact-SQL)

▪ https://docs.microsoft.com/en-us/sql/relational-databases/system-compatibility-views/system-
compatibility-views-transact-sql

 Transact-SQL statements
▪ https://docs.microsoft.com/en-us/sql/t-sql/statements/statements

 System Stored Procedures (Transact-SQL)
▪ https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/system-stored-

procedures-transact-sql
 Catalog Stored Procedures (Transact-SQL)

▪ https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/catalog-stored-
procedures-transact-sql

 sys.objects (Transact-SQL)
▪ https://docs.microsoft.com/en-us/sql/relational-databases/system-catalog-views/sys-objects-transact-sql

 Security Through Ownership Chains
▪ http://sqlmag.com/sql-server/security-through-ownership-chains

https://docs.microsoft.com/pl-pl/sql/relational-databases/security/security-center-for-sql-server-database-engine-and-azure-sql-database
http://sqlity.net/en/2180/default-owner/
https://www.simple-talk.com/sql/sql-training/schema-based-access-control-for-sql-server-databases/
https://www.mssqltips.com/sqlservertip/1900/understanding-sql-server-fixed-database-roles/
https://docs.microsoft.com/en-us/sql/relational-databases/system-compatibility-views/system-compatibility-views-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/statements/statements
https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/system-stored-procedures-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/catalog-stored-procedures-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-catalog-views/sys-objects-transact-sql
http://sqlmag.com/sql-server/security-through-ownership-chains

