
Microsevices
infrastructure: Docker

Two worlds: admins vs devs

• Code sharing is easy - git push/pull

• Repos are light - fetch only diffs

• But each developer can and will have different
environment: systems, systems versions, versions of
installed libs/bins

• Each developer can work in different projects - need to
have version tools like rvm, nvm, constant changing
libs versions

Two worlds: admins vs devs

• VM images sharing is hard (for developers):

• Images are heavy

• Builds are long

• But libs/bins, versions and OS are same

Two worlds: what if
• What if we combine best things from this two approaches

• Agree upon same kernel or some kind of VM

• Build images but share only changes

• Have simple way to create, share and manage these
images

• These images contains only layers of added thing on
top of kernel

Microservices

• Each service should be as small as possible

• But each service should be isolated as possible

• Should we create VM for each of these small pieces?

Docker

• Docker was released as open source in March 2013.

• March 2014, with the release of version 0.9, Docker dropped
LXC as the default execution environment and replaced it with its
own libcontainer library written in the Go.

• Docker uses the resource isolation features of the Linux
kernel such as cgroups and kernel namespaces, and a union-
capable file systems UnionFS

https://en.wikipedia.org/wiki/Go_(programming_language)
https://en.wikipedia.org/wiki/Linux_kernel
https://en.wikipedia.org/wiki/Linux_kernel

Docker: Secure by Default.

• Each container has own:

• Namespace: pid, uid, itc, mnt, net

• Cpgroup

• Each container has enabled:

• AppArmor policy

containers are not vm
They share same kernel with host

• Less isolated - but isolated from each other

• Light-weighted

• Sharable

Approaches

• Scary monolith

• Monolith with services

• Microservices

Scary monolith: bad
approach

• Use only base images

• Exec (or even ssh) to container, config by hand

• Run all needed processes in one container:

• application, db, cache-store, background-processing,
etc

• Container dies - config by hand once again

Scary monolith: better
approach

• Proper dockerfile

• docker pull; docker run

• All processes in one container

• example: Gitlab omnibus

Monolith with services

• Service is a set of processes needed to fulfill some
requirements, eq:

• App server, web server background processing.

• Db

• Cache-store

Monolith with services: real
world example

• Web server

• App server

• Real-time server

• Background processing

• Scheduler

• Database

• Cache-store

• Message bus

Monolith with services: real
world example

• And for local development:

• Local mail server

• Webpack

• http tunnel (ngrok)

Monolith with
services

Good way to start writing more microservices

Mircoservices

• Each container run one (group - eq unicorn) process

• Easy to inspect and reason about behavior

• Hard to build by hand - docker-compose for rescue

Docker

Docker
• Dockerfile

• Docker commands

• Docker run

• Docker-compose

• DevOps

• Threats

• Recommendations

Dockerfile

Dockerfile

• Contains directives to create docker image

• Each directive creates another image layer

• All created layers are read-only

• FROM, ENV, ADD, COPY, CMD, RUN

Docker commands

Docker commands
• Docker images

• Docker volumes (create ls)

• Docker pull

• Docker ps (-a -s)

• Docker logs / attach / stats

• Docker diff

Docker commands

• Docker run

• Docker exec (-it)

• Docker start, stop

• Docker kill

• Docker rm

Docker run
• -d —name

• -rm

• -p host:container

• —read-only

• -mount source=named-volume,target=path-in-conatiner

• -v source:target (/tmp:/app/logs)

Docker run
• —pid=host - drop namespace capability

• —cgroup-parent

• —memory —memory-swap

• —cpus —cpu-shares (default 1024) —cpu-quota (0 - 100)

• —blkio-weight (10 to 1000 default 500)

• —cap-add —cap-drop

• —oom-kill-disable

Default capabilities

Docker-compose

Docker-compose

• Running all needed containers by hand is hard

• We can write bash scripts

• But we can use docker-compose

Docker-compose

• Define YAML file

• Declarative style

• Run docker-compose up/
down/stop/restart/run

DevOps

DevOps - typical pipeline

• Build image

• Run tests

• Upload image to registry

• Deploy (on many hosts if necessary)

• Pull as developer

DevOps - debugging

• Fetch prod docker-compose

• Pull prod image

• docker-compose run

DevOps - feature apps

• We want to deliver with agile style

• With master-staging branch developers can blocks each
other

• What if each feature branch could have own staging?

DevOps - feature apps

• With docker/docker-compose - simple as 🥧

• Build image

• pull in staging VM,

• docker-compose run

• nginx-proxy for magical host discovery

Threats

Threats
• Poisoned images

• Kernel vulnerabilities

• Container takeover:

• Container breakout

• Secrets leakage

• Neighbors sniffing

• DoS

• Unrestricted access to REST API

• Unrestricted access to docker / root group on host

Recommendations

General recommendations
• Limit access to docker host

• Keep Docker deamon and kernel up to date

• Mix two world - VMs and containers

• Keep services with critical data/accesess away from
regular one (on different machine or different VM)

• least privilege, least access

• Write your own Seccomp polices and use them

Dockerfile recomendations
• Carefully chose base image

• Do not forget about default config

• If possible - tailor your own, based on minimalistic image

• Change USER

• One processes per container

• No deamons

• Print logs to stdout

Dockerfile
recommendations

•Docker Security Scanning

•CorsOs - Clair

•Docker-bench

Docker run
recommendations

• Believe in default config

• Bind ports if necessary

• Never run —privileged option

• Do not run in default network

• Drop all unused capabilities

• Limit resources

• Use namespaces

Docker run
recommendations

• Run —read-only if possible

• Be careful with volumes

• Do not mount to sensitive dirs

• If you must - read only

• Create as many network as needed

Running container
recommendations

• Central logs / monitoring (ELK stack, papiertrail, grafana)

• Immutable infrastructure

• All containers with same image share same behavior

• Audit images - not containers

• Do not be afraid of killing

Secrets recommendation

• Use secrets per container

• options:

• Bad: store in Dockerfile

• Better: pass in env variables

• Better: mount volume

• Better: Use Vault (maybe in container)

REST API recommendation

• Do not mount /var/run/docker.sock to container

• Hide

• Force VPN

