Microsevices
Infrastructure: Docker



Two worlds: admins vs devs

e Code sharing is easy - git push/pull
e Repos are light - fetch only diffs

e But each developer can and will have different
environment: systems, systems versions, versions of
installed libs/bins

e Each developer can work in different projects - need to
have version tools like rvym, nvm, constant changing
libs versions



Two worlds: admins vs devs

e VM images sharing is hard (for developers):
e |mages are heavy
e Builds are long

e But libs/bins, versions and OS are same



Two worlds: what If

e What if we combine best things from this two approaches
e Agree upon same kernel or some kind of VM
e Build images but share only changes

e Have simple way to create, share and manage these
images

e These images contains only layers of added thing on
top of kernel



Microservices

e Each service should be as small as possible
e But each service should be isolated as possible

e Should we create VM for each of these small pieces?



Docker



e Docker was released as open source in March 2013.

e March 2014, with the release of version 0.9, Docker dropped
LXC as the default execution environment and replaced it with its
own libcontainer library written in the Go.

e Docker uses the resource isolation features of the Linux
kernel such as cgroups and kernel namespaces, and a union-
capable file systems UnionFS


https://en.wikipedia.org/wiki/Go_(programming_language)
https://en.wikipedia.org/wiki/Linux_kernel
https://en.wikipedia.org/wiki/Linux_kernel

Docker: Secure by Default.

e Each container has own:
e Namespace: pid, uid, itc, mnt, net
e Cpgroup

e Each container has enabled:

e AppArmor policy



container

network

manages

REST API

server
docker daemon

4

image

I
manages manages —J

data volumes

)

manages



App B

Bins/Libs

App B
Guest OS
Bins/Libs

Docker Engine Hypervisor

Host OS Host OS

Server Server

containers are not vm

They share same kernel with host



App B

Bins/Libs

App B
Guest OS

Bins/Libs

Docker Engine Hypervisor

Host OS Host OS

Server Server

e | ess isolated - but isolated from each other
e Light-weighted

e Sharable



Approaches

e Scary monolith
e Monolith with services

e Microservices



Scary monolith: bad
approach

Use only base images
Exec (or even ssh) to container, config by hand
Run all needed processes in one container:

e application, db, cache-store, background-processing,
etc

Container dies - config by hand once again



Scary monolith: better
approach

e Proper dockerfile

e docker pull; docker run

e All processes in one container

e example: Gitlab omnibus



Monolith with services

e Service is a set of processes needed to fulfill some
requirements, eq:

e App server, web server background processing.
e Db

e Cache-store



Monolith with services: real
world example

Web server

App server

Real-time server
Background processing
Scheduler

Database

Cache-store

Message bus



Monolith with services: real
world example

 And for local development:
e | ocal malil server

e \Webpack

e http tunnel (ngrok)



Monolith with
services

Good way to start writing more microservices



Mircoservices

e Each container run one (group - €q unicorn) process
e Easy to inspect and reason about behavior

 Hard to build by hand - docker-compose for rescue



Docker



Dockerfile

Docker commands
Docker run
Docker-compose
DevOps

Threats

Recommendations

Docker



Dockerfile



Dockerfile

Contains directives to create docker image
Each directive creates another image layer
All created layers are read-only

FROM, ENV, ADD, COPY, CMD, RUN



Docker commmands



Docker commmands

Docker images

Docker volumes (create Is)
Docker pull

Docker ps (-a -s)

Docker logs / attach / stats

Docker diff



Docker commands

Docker run
Docker exec (-it)
Docker start, stop

Docker Kill

Docker rm



Docker run

-d —name

-rm

-p host:container

—read-only

-mount source=named-volume,target=path-in-conatiner

-v source:target (/tmp:/app/logs)



Docker run

—pid=host - drop namespace capability

—cgroup-parent

—Mmemory —memory-swap

—cpus —cpu-shares (default 1024) —cpu-quota (0 - 100)
—Dblkio-weight (10 to 1000 default 500)

—cap-add —cap-drop

—oom-kill-disable



Default capabilities

Capability Key Capabllity Description

SETPCAP Modity process capabilities.

MKNOD Create special f les using mknod(2).

AUDIT_WRITE Write records to kernel auditing log.

CHOWN Mzke arbitrary changes to file UIDs and GIDs (see chown(2)).

NET_RAW Usa RAW and PACKET scckets.

DAC OVZER/DE Bypass file read, write, and execute permission checks.

FOWNER RZ; m\‘.\'..} ermissinr checks on operations that narmally require the file system LIID of the arocess to match the LD
of the file

FSETID Don clear set-user-1D and set-group-ID permissicn bits when a file is modifiac.

KILL Bypass permissior checks for sending signals.

SCTGID Make arbitrary manipulations of praocess G/Ds and supplementary GID list.

SETUID Mzke arbitrary manipulations of process U/Ds.

NE|_BIND_SERVICE  Bind a socket to intarnet domain privileged perts (port numbers less than 10.24).
SYS_CHROOT Usz chreot(2), change root directory.

SCTFCAF Set file capabilities.



Docker-compose



Docker-compose

e Running all needed containers by hand is hard
e We can write bash scripts

e But we can use docker-compose



Docker-compose

version: '3
services:
web:
build:
ports:
e Define YAML file - "5000:5000"
vo Llumes:
e Declarative style - .:/code
— logvolume@l: /var/ log

e Run docker-compose up/ links:

down/stop/restart/run - redis
redis:

image: redis
volumes:
logvolumedl: {}



DevOps



DevOps - typical pipeline

e Build image

 Run tests

e Upload image to registry

e Deploy (on many hosts if necessary)

e Pull as developer



DevOps - debugging

e Fetch prod docker-compose
e Pull prod image

e docker-compose run



DevOps - feature apps

e \We want to deliver with agile style

e With master-staging branch developers can blocks each
other

 What if each feature branch could have own staging?



DevOps - feature apps

e With docker/docker-compose - simple as «
 Build image
 pull in staging VM,
* docker-compose run

* nginx-proxy for magical host discovery



Threats



Threats

Poisoned images
Kernel vulnerabilities
Container takeover:
e Container breakout
e Secrets leakage
* Neighbors sniffing
DoS
Unrestricted access to REST API

Unrestricted access to docker / root group on host



Recommendations



General recommendations

e Limit access to docker host
e Keep Docker deamon and kernel up to date
e Mix two world - VMs and containers

o Keep services with critical data/accesess away from
regular one (on different machine or different VM)

e |east privilege, least access

e Write your own Seccomp polices and use them



Dockerfile recomendations

Carefully chose base image

Do not forget about default config

If possible - tailor your own, based on minimalistic image
Change USER

One processes per container

e No deamons

* Print logs to stdout



Dockerfile
recommendations

* Docker Security Scanning
* CorsOs - Clair

* Docker-bench



Docker run
recommendations

Believe in default config

Bind ports if necessary
Never run —privileged option
Do not run in default network
Drop all unused capabillities
Limit resources

Use namespaces



Docker run
recommendations

e Run —read-only if possible

e Be careful with volumes
e Do not mount to sensitive dirs
e |f you must - read only

e Create as many network as needed



Running container
recommendations

e Central logs / monitoring (ELK stack, papiertrail, grafana)
e Immutable infrastructure

e All containers with same image share same behavior

e Audit images - not containers

e Do not be afraid of killing



Secrets recommendation

e Use secrets per container

e options:
e Bad: store in Dockerfile
e Better: pass in env variables
e Better: mount volume

e Better: Use Vault (maybe in container)



REST APl recommendation

e Do not mount /var/run/docker.sock to container
e Hide

e Force VPN



